Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
13
result(s) for
"Wöhrle, Simon"
Sort by:
A selective and orally bioavailable VHL-recruiting PROTAC achieves SMARCA2 degradation in vivo
by
Gerstberger, Thomas
,
Chetta, Paolo
,
Wurm, Melanie
in
631/154/309/2420
,
631/337/100/102
,
631/45/474/2085
2022
Targeted protein degradation offers an alternative modality to classical inhibition and holds the promise of addressing previously undruggable targets to provide novel therapeutic options for patients. Heterobifunctional molecules co-recruit a target protein and an E3 ligase, resulting in ubiquitylation and proteosome-dependent degradation of the target. In the clinic, the oral route of administration is the option of choice but has only been achieved so far by CRBN- recruiting bifunctional degrader molecules. We aimed to achieve orally bioavailable molecules that selectively degrade the BAF Chromatin Remodelling complex ATPase SMARCA2 over its closely related paralogue SMARCA4, to allow in vivo evaluation of the synthetic lethality concept of SMARCA2 dependency in SMARCA4-deficient cancers. Here we outline structure- and property-guided approaches that led to orally bioavailable VHL-recruiting degraders. Our tool compound, ACBI2, shows selective degradation of SMARCA2 over SMARCA4 in ex vivo human whole blood assays and in vivo efficacy in SMARCA4-deficient cancer models. This study demonstrates the feasibility for broadening the E3 ligase and physicochemical space that can be utilised for achieving oral efficacy with bifunctional molecules.
Protein degraders are an emerging drug modality; however, their properties lie beyond typical drug-like space. Here the authors report optimisation via structure-based exit vector and linker design towards the VHL-recruiting PROTAC ACBI2, an orally bioavailable and selective degrader of SMARCA2.
Journal Article
Werner syndrome helicase is a selective vulnerability of microsatellite instability-high tumor cells
by
Kamper, Elisabeth
,
Peters, Jan-Michael
,
Nagasaka, Kota
in
Cancer
,
Cancer Biology
,
Cell Line, Tumor
2019
Targeted cancer therapy is based on exploiting selective dependencies of tumor cells. By leveraging recent functional screening data of cancer cell lines we identify Werner syndrome helicase (WRN) as a novel specific vulnerability of microsatellite instability-high (MSI-H) cancer cells. MSI, caused by defective mismatch repair (MMR), occurs frequently in colorectal, endometrial and gastric cancers. We demonstrate that WRN inactivation selectively impairs the viability of MSI-H but not microsatellite stable (MSS) colorectal and endometrial cancer cell lines. In MSI-H cells, WRN loss results in severe genome integrity defects. ATP-binding deficient variants of WRN fail to rescue the viability phenotype of WRN-depleted MSI-H cancer cells. Reconstitution and depletion studies indicate that WRN dependence is not attributable to acute loss of MMR gene function but might arise during sustained MMR-deficiency. Our study suggests that pharmacological inhibition of WRN helicase function represents an opportunity to develop a novel targeted therapy for MSI-H cancers.
Journal Article
Fibroblast Growth Factor Receptors as Novel Therapeutic Targets in SNF5-Deleted Malignant Rhabdoid Tumors
2013
Malignant rhabdoid tumors (MRTs) are aggressive pediatric cancers arising in brain, kidney and soft tissues, which are characterized by loss of the tumor suppressor SNF5/SMARCB1. MRTs are poorly responsive to chemotherapy and thus a high unmet clinical need exists for novel therapies for MRT patients. SNF5 is a core subunit of the SWI/SNF chromatin remodeling complex which affects gene expression by nucleosome remodeling. Here, we report that loss of SNF5 function correlates with increased expression of fibroblast growth factor receptors (FGFRs) in MRT cell lines and primary tumors and that re-expression of SNF5 in MRT cells causes a marked repression of FGFR expression. Conversely, siRNA-mediated impairment of SWI/SNF function leads to elevated levels of FGFR2 in human fibroblasts. In vivo, treatment with NVP-BGJ398, a selective FGFR inhibitor, blocks progression of a murine MRT model. Hence, we identify FGFR signaling as an aberrantly activated oncogenic pathway in MRTs and propose pharmacological inhibition of FGFRs as a potential novel clinical therapy for MRTs.
Journal Article
BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design
2019
Targeting subunits of BAF/PBAF chromatin remodeling complexes has been proposed as an approach to exploit cancer vulnerabilities. Here, we develop proteolysis targeting chimera (PROTAC) degraders of the BAF ATPase subunits SMARCA2 and SMARCA4 using a bromodomain ligand and recruitment of the E3 ubiquitin ligase VHL. High-resolution ternary complex crystal structures and biophysical investigation guided rational and efficient optimization toward ACBI1, a potent and cooperative degrader of SMARCA2, SMARCA4 and PBRM1. ACBI1 induced anti-proliferative effects and cell death caused by SMARCA2 depletion in SMARCA4 mutant cancer cells, and in acute myeloid leukemia cells dependent on SMARCA4 ATPase activity. These findings exemplify a successful biophysics- and structure-based PROTAC design approach to degrade high profile drug targets, and pave the way toward new therapeutics for the treatment of tumors sensitive to the loss of BAF complex ATPases.
A structure-based design allows the development of a potent PROTAC to degrade BAF ATPase subunits SMARCA2 and SMARCA4 via recruitment of E3 ubiquitin ligase VHL and induce cancer cell death.
Journal Article
SMARCA2-deficiency confers sensitivity to targeted inhibition of SMARCA4 in esophageal squamous cell carcinoma cell lines
2019
SMARCA4/BRG1 and SMARCA2/BRM, the two mutually exclusive catalytic subunits of the BAF complex, display a well-established synthetic lethal relationship in SMARCA4-deficient cancers. Using CRISPR-Cas9 screening, we identify SMARCA4 as a novel dependency in SMARCA2-deficient esophageal squamous cell carcinoma (ESCC) models, reciprocal to the known synthetic lethal interaction. Restoration of SMARCA2 expression alleviates the dependency on SMARCA4, while engineered loss of SMARCA2 renders ESCC models vulnerable to concomitant depletion of SMARCA4. Dependency on SMARCA4 is linked to its ATPase activity, but not to bromodomain function. We highlight the relevance of SMARCA4 as a drug target in esophageal cancer using an engineered ESCC cell model harboring a SMARCA4 allele amenable to targeted proteolysis and identify SMARCA4-dependent cell models with low or absent SMARCA2 expression from additional tumor types. These findings expand the concept of SMARCA2/SMARCA4 paralog dependency and suggest that pharmacological inhibition of SMARCA4 represents a novel therapeutic opportunity for SMARCA2-deficient cancers.
Journal Article
Inactivation of Lsd1 triggers senescence in trophoblast stem cells by induction of Sirt4
2017
Coordination of energy metabolism is essential for homeostasis of stem cells, whereas an imbalance in energy homeostasis causes disease and accelerated aging. Here we show that deletion or enzymatic inactivation of lysine-specific demethylase 1 (Lsd1) triggers senescence in trophoblast stem cells (TSCs). Genome-wide transcriptional profiling of TSCs following Lsd1 inhibition shows gene set enrichment of aging and metabolic pathways. Consistently, global metabolomic and phenotypic analyses disclose an unbalanced redox status, decreased glutamine anaplerosis and mitochondrial function. Loss of homeostasis is caused by increased expression of
sirtuin 4
(
Sirt4),
a Lsd1-repressed direct target gene. Accordingly, Sirt4 overexpression in wild-type TSCs recapitulates the senescence phenotype initiated by Lsd1 deletion or inhibition. Inversely, absence of Lsd1 enzymatic activity concomitant with knockdown of
Sirt4
reestablishes normal glutamine anaplerosis, redox balance and mitochondrial function. In conclusion, by repression of Sirt4, Lsd1 directs the epigenetic control of TSC immortality via maintenance of metabolic flexibility.
Journal Article
Publisher Correction: BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design
2019
In the version of this article originally published, several lines of text in the last paragraph of the right column on page 1 of the PDF were transposed into the bottom paragraph of the left column. The affected text of the left column should read “The ATP-dependent activities of the BAF (SWI/SNF) chromatin remodeling complexes affect the positioning of nucleosomes on DNA and thereby many cellular processes related to chromatin structure, including transcription, DNA repair and decatenation of chromosomes during mitosis
12,13
.” The affected text of the right column should read “SMARCA2/4
BD
inhibitors are thus precluded from use for the treatment of SMARCA4 mutant cancers but could provide attractive ligands for PROTAC conjugation. Small molecules binding to other bromodomains have been successfully converted into PROTACs by conjugating them with structures capable of binding to the E3 ligases von Hippel−Lindau (VHL) or cereblon
5,6,10,11,25,26,27
.” The errors have been corrected in the PDF version of the paper.
Journal Article
Cell Biology Methods in Target Validation
2020,2019
Once the first useful inhibitors for a novel drug target are available, the question inevitably arises: Is there a causal connection between inhibition of the target and the observed biological effects? Two main approaches exist to clarify this: Firstly, a tight correlation between in vitro and in vivo potencies within series of compounds indicates that target inhibition most likely causes the biological effect. Second, to unequivocally prove a causal connection, mutations that render the target resistant or more sensitive to a drug can be employed. In the absence of specific inhibitors, chemoproteomic approaches allow to assess the effect of pharmacological inhibition of a target protein.
Book Chapter
Interrogation of cancer gene dependencies reveals novel paralog interactions of autosome and sex chromosome encoded genes
2021
Genetic networks are characterized by extensive buffering. During tumour evolution, disruption of these functional redundancies can create de novo vulnerabilities that are specific to cancer cells. In this regard, paralog genes are of particular interest, as the loss of one paralog gene can render tumour cells dependent on a remaining paralog. To systematically identify cancer-relevant paralog dependencies, we searched for candidate dependencies using CRISPR screens and publicly available loss-of-function datasets. Our analysis revealed >2,000 potential candidate dependencies, several of which were subsequently experimentally validated. We provide evidence that DNAJC15-DNAJC19, FAM50A-FAM50B and RPP25-RPP25L are novel cancer relevant paralog dependencies. Importantly, our analysis also revealed unexpected redundancies between sex chromosome genes. We show that chrX- and chrY- encoded paralogs, as exemplified by ZFX-ZFY, DDX3X-DDX3Y and EIF1AX-EIF1AY, are functionally linked so that tumour cell lines from male patients with Y-chromosome loss become exquisitely dependent on the chrX-encoded gene. We therefore propose genetic redundancies between chrX- and chrY- encoded paralogs as a general therapeutic strategy for human tumours that have lost the Y-chromosome.
Werner syndrome helicase is a selective vulnerability of microsatellite instability high tumor cells
by
Kamper, Elisabeth
,
Nagasaka, Kota
,
Bader, Gerd
in
Adenosine triphosphatase
,
Cancer
,
Cancer Biology
2019
Targeted cancer therapy is based on exploiting selective dependencies of tumor cells. By leveraging recent large-scale genomic profiling and functional screening of cancer cell lines we identified Werner syndrome helicase (WRN) as a novel specific vulnerability of microsatellite instability-high (MSI-H) cancer cells. MSI, caused by defective mismatch repair is frequently detected in human malignancies, in particular in colorectal, endometrial and gastric cancers. We demonstrate that WRN inactivation selectively impairs the viability of MSI-H but not microsatellite stable (MSS) colorectal and endometrial cancer cell lines. In MSI-H cells, WRN loss results in the emergence of chromosome breaks, chromatin bridges and micronuclei highlighting defective genome integrity. WRN variants harboring mutations abrogating the ATPase function of WRN helicase fail to rescue the viability phenotype of WRN-depleted MSI-H colorectal cells. Our study suggests that pharmacological inhibition of WRN helicase function might represent a novel opportunity to develop a targeted therapy for MSI-H cancers.