Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
5
result(s) for
"Wühler, Felix"
Sort by:
Liquid Mixing on Falling Films: Marker-Free, Molecule-Sensitive 3D Mapping Using Raman Imaging
by
Feger, Daniel
,
Rädle, Matthias
,
Scholl, Stephan
in
Chemical industry
,
Chemical reactions
,
Design of experiments
2023
Following up on a proof of concept, this publication presents a new method for mixing mapping on falling liquid films. On falling liquid films, different surfaces, plain or structured, are common. Regarding mixing of different components, the surface has a significant effect on its capabilities and performance. The presented approach combines marker-free and molecule-sensitive measurements with cross-section mapping to emphasize the mixing capabilities of different surfaces. As an example of the mixing capabilities on falling films, the mixing of sodium sulfate with tap water is presented, followed by a comparison between a plain surface and a pillow plate. The method relies upon point-by-point Raman imaging with a custom-built high-working-distance, low-depth-of-focus probe. To compensate for the long-time measurements, the continuous plant is in its steady state, which means the local mixing state is constant, and the differences are based on the liquids’ position on the falling film, not on time. Starting with two separate streams, the mixing progresses by falling down the surface. In conclusion, Raman imaging is capable of monitoring mixing without any film disturbance and provides detailed information on liquid flow in falling films.
Journal Article
Rapid brain structure and tumour margin detection on whole frozen tissue sections by fast multiphotometric mid-infrared scanning
2021
Frozen section analysis is a frequently used method for examination of tissue samples, especially for tumour detection. In the majority of cases, the aim is to identify characteristic tissue morphologies or tumour margins. Depending on the type of tissue, a high number of misdiagnoses are associated with this process. In this work, a fast spectroscopic measurement device and workflow was developed that significantly improves the speed of whole frozen tissue section analyses and provides sufficient information to visualize tissue structures and tumour margins, dependent on their lipid and protein molecular vibrations. That optical and non-destructive method is based on selected wavenumbers in the mid-infrared (MIR) range. We present a measuring system that substantially outperforms a commercially available Fourier Transform Infrared (FT-IR) Imaging system, since it enables acquisition of reduced spectral information at a scan field of 1 cm
2
in 3 s, with a spatial resolution of 20 µm. This allows fast visualization of segmented structure areas with little computational effort. For the first time, this multiphotometric MIR system is applied to biomedical tissue sections. We are referencing our novel MIR scanner on cryopreserved murine sagittal and coronal brain sections, especially focusing on the hippocampus, and show its usability for rapid identification of primary hepatocellular carcinoma (HCC) in mouse liver.
Journal Article
Marker-Free, Molecule Sensitive Mapping of Disturbed Falling Fluid Films Using Raman Imaging
by
Feger, Daniel
,
Rädle, Matthias
,
Scholl, Stephan
in
Cameras
,
Communication
,
Diagnostic Imaging
2022
Technical liquid flow films are the basic arrangement for gas fluid transitions of all kinds and are the basis of many chemical processes, such as columns, evaporators, dryers, and different other kinds of fluid/fluid separation units. This publication presents a new method for molecule sensitive, non-contact, and marker-free localized concentration mapping in vertical falling films. Using Raman spectroscopy, no label or marker is needed for the detection of the local composition in liquid mixtures. In the presented cases, the film mapping of sodium sulfate in water on a plain surface as well as an added artificial streaming disruptor with the shape of a small pyramid is scanned in three dimensions. The results show, as a prove of concept, a clear detectable spectroscopic difference between air, back plate, and sodium sulfate for every local point in all three dimensions. In conclusion, contactless Raman scanning on falling films for liquid mapping is realizable without any mechanical film interaction caused by the measuring probe. Surface gloss or optical reflections from a metallic back plate are suppressed by using only inelastic light scattering and the mathematical removal of background noise.
Journal Article
Novel Multimodal Imaging System for High-Resolution and High-Contrast Tissue Segmentation Based on Chemical Properties
by
Wängler, Carmen
,
Rädle, Matthias
,
Hopf, Carsten
in
Animals
,
Biomedical engineering
,
Brain - diagnostic imaging
2025
Accurate and detailed tissue characterization is a central goal in medical diagnostics, often requiring the combination of multiple imaging modalities. This study presents a multimodal imaging system that integrates mid-infrared (MIR) scanning with fluorescence imaging to enhance the chemical specificity and spatial resolution in biological samples. A motorized mirror allows rapid switching between MIR and fluorescence modes, enabling efficient, co-registered data acquisition. The MIR modality captures label-free chemical maps based on molecular vibrations, while the fluorescence channel records endogenous autofluorescence for additional biochemical contrast. Applied to mouse brain tissue, the system enabled the clear differentiation of gray matter and white matter, supported by the clustering analysis of spectral features. The addition of autofluorescence imaging further improved anatomical segmentation and revealed fine structural details. In mouse skin, the approach allowed the precise mapping of the layered tissue architecture. These results demonstrate that combining MIR scanning and fluorescence imaging provides complementary, label-free insights into tissue morphology and chemistry. The findings support the utility of this approach as a powerful tool for biomedical research and diagnostic applications, offering a more comprehensive understanding of tissue composition without relying on staining or external markers.
Journal Article
Design of a Multimodal Imaging System and Its First Application to Distinguish Grey and White Matter of Brain Tissue. A Proof-of-Concept-Study
by
Beuermann, Thomas
,
Rädle, Matthias
,
Wühler, Felix
in
brightfield microscopy
,
darkfield microscopy
,
Lasers
2021
Multimodal imaging gains increasing popularity for biomedical applications. This article presents the design of a novel multimodal imaging system. The centerpiece is a light microscope operating in the incident and transmitted light mode. Additionally, Raman spectroscopy and VIS/NIR reflectance spectroscopy are adapted. The proof-of-concept is realized to distinguish between grey matter (GM) and white matter (WM) of normal mouse brain tissue. Besides Raman and VIS/NIR spectroscopy, the following optical microscopy techniques are applied in the incident light mode: brightfield, darkfield, and polarization microscopy. To complement the study, brightfield images of a hematoxylin and eosin (H&E) stained cryosection in the transmitted light mode are recorded using the same imaging system. Data acquisition based on polarization microscopy and Raman spectroscopy gives the best results regarding the tissue differentiation of the unstained section. In addition to the discrimination of GM and WM, both modalities are suited to highlight differences in the density of myelinated axons. For Raman spectroscopy, this is achieved by calculating the sum of two intensity peak ratios (I2857 + I2888)/I2930 in the high-wavenumber region. For an optimum combination of the modalities, it is recommended to apply the molecule-specific but time-consuming Raman spectroscopy to smaller regions of interest, which have previously been identified by the microscopic modes.
Journal Article