Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
129
result(s) for
"WINTER, MARTEN"
Sort by:
Remoteness promotes biological invasions on islands worldwide
by
García-Díaz, Pablo
,
Guénard, Benoit
,
Pergl, Jan
in
Anthropogenic factors
,
Biodiversity
,
Biogeography
2018
One of the best-known general patterns in island biogeography is the species–isolation relationship (SIR), a decrease in the number of native species with increasing island isolation that is linked to lower rates of natural dispersal and colonization on remote oceanic islands. However, during recent centuries, the anthropogenic introduction of alien species has increasingly gained importance and altered the composition and richness of island species pools. We analyzed a large dataset for alien and native plants, ants, reptiles, mammals, and birds on 257 (sub) tropical islands, and showed that, except for birds, the number of naturalized alien species increases with isolation for all taxa, a pattern that is opposite to the negative SIR of native species. We argue that the reversal of the SIR for alien species is driven by an increase in island invasibility due to reduced diversity and increased ecological naiveté of native biota on the more remote islands.
Journal Article
Increasing species richness but decreasing phylogenetic richness and divergence over a 320-year period of urbanization
by
Knapp, Sonja
,
Klotz, Stefan
,
Winter, Marten
in
Biodiversity
,
Biological evolution
,
biological invasions
2017
1. Urbanization is increasing faster than ever, contributing to a global extinction crisis. Recently, scientists have debated whether species richness on local and regional scales is mostly declining, but long-term changes in phylogenetic richness and divergence were largely disregarded. Space-for-time approaches revealed that plant phylogenetic divergence is lower in urban than in non-urban areas. However, such approaches cannot fully disentangle the relative importance of the biotic processes that drive temporal changes in diversity. 2. Using a unique European urban flora covering 320 years in seven time steps, combined with a comprehensive plant phylogeny, we examined (i) how species richness changed with urbanization over time; (ii) whether trends in phylogenetic richness and divergence parallel trends in species richness; and (iii) whether species extirpation or immigration is driving these changes. 3. We found that over time urban species richness increased, but phylogenetic richness and divergence decreased. Extirpations of phylogenetically distinct native species and immigrations of phylogenetically common native and non-native species caused a non-random loss of phylogenetic diversity. Our analyses suggest that if future extirpations and immigrations continue to follow the patterns observed over history, this loss will continue. 4. Synthesis and applications. Measures to protect phylogenetic diversity should combine the protection of threatened habitats and their species with the maintenance of habitats that mitigate heat and safeguard evolutionary history. Urban planners should consider a phylogenetically diverse set of species when designing green spaces.
Journal Article
The impact of land use on non-native species incidence and number in local assemblages worldwide
2023
While the regional distribution of non-native species is increasingly well documented for some taxa, global analyses of non-native species in local assemblages are still missing. Here, we use a worldwide collection of assemblages from five taxa - ants, birds, mammals, spiders and vascular plants - to assess whether the incidence, frequency and proportions of naturalised non-native species depend on type and intensity of land use. In plants, assemblages of primary vegetation are least invaded. In the other taxa, primary vegetation is among the least invaded land-use types, but one or several other types have equally low levels of occurrence, frequency and proportions of non-native species. High land use intensity is associated with higher non-native incidence and frequency in primary vegetation, while intensity effects are inconsistent for other land-use types. These findings highlight the potential dual role of unused primary vegetation in preserving native biodiversity and in conferring resistance against biological invasions.
Anthropogenic habitat modification is considered a driver of non-native species establishment. Here, the authors quantify the occurrence of non-native species in local assemblages of vascular plants, ants, spiders, birds and mammals, finding generally greater presence and frequency under disturbed land-use types.
Journal Article
Harmonizing taxon names in biodiversity data: A review of tools, databases and best practices
by
Berti, Emilio
,
Carvajal‐Quintero, Juan
,
Sagouis, Alban
in
Applications programs
,
Best practice
,
Biodiversity
2023
The process of standardizing taxon names, taxonomic name harmonization, is necessary to properly merge data indexed by taxon names. The large variety of taxonomic databases and related tools are often not well described. It is often unclear which databases are actively maintained or what is the original source of taxonomic information. In addition, software to access these databases is developed following non‐compatible standards, which creates additional challenges for users. As a result, taxonomic harmonization has become a major obstacle in ecological studies that seek to combine multiple datasets. Here, we review and categorize a set of major taxonomic databases publicly available as well as a large collection of R packages to access them and to harmonize lists of taxon names. We categorized available taxonomic databases according to their taxonomic breadth (e.g. taxon specific vs. multi‐taxa) and spatial scope (e.g. regional vs. global), highlighting strengths and caveats of each type of database. We divided R packages according to their function, (e.g. syntax standardization tools, access to online databases, etc.) and highlighted overlaps among them. We present our findings (e.g. network of linkages, data and tool characteristics) in a ready‐to‐use Shiny web application (available at: https://mgrenie.shinyapps.io/taxharmonizexplorer/). We also provide general guidelines and best practice principles for taxonomic name harmonization. As an illustrative example, we harmonized taxon names of one of the largest databases of community time series currently available. We showed how different workflows can be used for different goals, highlighting their strengths and weaknesses and providing practical solutions to avoid common pitfalls. To our knowledge, our opinionated review represents the most exhaustive evaluation of links among and of taxonomic databases and related R tools. Finally, based on our new insights in the field, we make recommendations for users, database managers and package developers alike.
Journal Article
The geography of biodiversity change in marine and terrestrial assemblages
2019
Human activities are fundamentally altering biodiversity. Projections of declines at the global scale are contrasted by highly variable trends at local scales, suggesting that biodiversity change may be spatially structured. Here, we examined spatial variation in species richness and composition change using more than 50,000 biodiversity time series from 239 studies and found clear geographic variation in biodiversity change. Rapid compositional change is prevalent, with marine biomes exceeding and terrestrial biomes trailing the overall trend. Assemblage richness is not changing on average, although locations exhibiting increasing and decreasing trends of up to about 20% per year were found in some marine studies. At local scales, widespread compositional reorganization is most often decoupled from richness change, and biodiversity change is strongest and most variable in the oceans.
Journal Article
Blind spots in global soil biodiversity and ecosystem function research
2020
Soils harbor a substantial fraction of the world’s biodiversity, contributing to many crucial ecosystem functions. It is thus essential to identify general macroecological patterns related to the distribution and functioning of soil organisms to support their conservation and consideration by governance. These macroecological analyses need to represent the diversity of environmental conditions that can be found worldwide. Here we identify and characterize existing environmental gaps in soil taxa and ecosystem functioning data across soil macroecological studies and 17,186 sampling sites across the globe. These data gaps include important spatial, environmental, taxonomic, and functional gaps, and an almost complete absence of temporally explicit data. We also identify the limitations of soil macroecological studies to explore general patterns in soil biodiversity-ecosystem functioning relationships, with only 0.3% of all sampling sites having both information about biodiversity and function, although with different taxonomic groups and functions at each site. Based on this information, we provide clear priorities to support and expand soil macroecological research.
Journal Article
A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers
by
Aronson, Myla F.J
,
Nilon, Charles H
,
Cilliers, Sarel
in
Animals
,
Anthropogenic Activities
,
Biodiversity
2014
Urbanization contributes to the loss of the world's biodiversity and the homogenization of its biota. However, comparative studies of urban biodiversity leading to robust generalities of the status and drivers of biodiversity in cities at the global scale are lacking. Here, we compiled the largest global dataset to date of two diverse taxa in cities: birds (54 cities) and plants (110 cities). We found that the majority of urban bird and plant species are native in the world's cities. Few plants and birds are cosmopolitan, the most common being Columba livia and Poa annua. The density of bird and plant species (the number of species per km2) has declined substantially: only 8% of native bird and 25% of native plant species are currently present compared with estimates of non-urban density of species. The current density of species in cities and the loss in density of species was best explained by anthropogenic features (landcover, city age) rather than by non-anthropogenic factors (geography, climate, topography). As urbanization continues to expand, efforts directed towards the conservation of intact vegetation within urban landscapes could support higher concentrations of both bird and plant species. Despite declines in the density of species, cities still retain endemic native species, thus providing opportunities for regional and global biodiversity conservation, restoration and education.
Journal Article
A unified classification on alien species based on the magnitude of their environmental impacts
by
Ricciardi, Anthony
,
Genovesi, Piero
,
Pergl, Jan
in
Animal Distribution - physiology
,
Animals
,
Biodiversity
2014
Species moved by human activities beyond the limits of their native geographic ranges into areas in which they do not naturally occur (termed aliens) can cause a broad range of significant changes to recipient ecosystems; however, their impacts vary greatly across species and the ecosystems into which they are introduced. There is therefore a critical need for a standardised method to evaluate, compare, and eventually predict the magnitudes of these different impacts. Here, we propose a straightforward system for classifying alien species according to the magnitude of their environmental impacts, based on the mechanisms of impact used to code species in the International Union for Conservation of Nature (IUCN) Global Invasive Species Database, which are presented here for the first time. The classification system uses five semi-quantitative scenarios describing impacts under each mechanism to assign species to different levels of impact-ranging from Minimal to Massive-with assignment corresponding to the highest level of deleterious impact associated with any of the mechanisms. The scheme also includes categories for species that are Not Evaluated, have No Alien Population, or are Data Deficient, and a method for assigning uncertainty to all the classifications. We show how this classification system is applicable at different levels of ecological complexity and different spatial and temporal scales, and embraces existing impact metrics. In fact, the scheme is analogous to the already widely adopted and accepted Red List approach to categorising extinction risk, and so could conceivably be readily integrated with existing practices and policies in many regions.
Journal Article
Planning for the future of urban biodiversity: a global review of city-scale initiatives
2017
Cities represent considerable opportunities for forwarding global biodiversity and sustainability goals. We developed key attributes for conserving biodiversity and for ecosystem services that should be included in urban-planning documents and reviewed 135 plans from 40 cities globally. The most common attributes in city plans were goals for habitat conservation, air and water quality, cultural ecosystem services, and ecological connectivity. Few plans included quantitative targets. This lack of measurable targets may render plans unsuccessful for an actionable approach to local biodiversity conservation. Although most cities include both biodiversity and ecosystem services, each city tends to focus on one or the other. Comprehensive planning for biodiversity should include the full range of attributes identified, but few cities do this, and the majority that do are mandated by local, regional, or federal governments to plan specifically for biodiversity conservation. This research provides planning recommendations for protecting urban biodiversity based on ecological knowledge
Journal Article
Plants capable of selfing are more likely to become naturalized
2016
Many plant species have established self-sustaining populations outside their natural range because of human activities. Plants with selfing ability should be more likely to establish outside their historical range because they can reproduce from a single individual when mates or pollinators are not available. Here, we compile a global breeding-system database of 1,752 angiosperm species and use phylogenetic generalized linear models and path analyses to test relationships between selfing ability, life history, native range size and global naturalization status. Selfing ability is associated with annual or biennial life history and a large native range, which both positively correlate with the probability of naturalization. Path analysis suggests that a high selfing ability directly increases the number of regions where a species is naturalized. Our results provide robust evidence across flowering plants at the global scale that high selfing ability fosters alien plant naturalization both directly and indirectly.
Journal Article