Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
63 result(s) for "WULF, HANS CHRISTIAN"
Sort by:
A revised action spectrum for vitamin D synthesis by suberythemal UV radiation exposure in humans in vivo
Action spectra are important biological weighting functions for risk/benefit analyses of ultraviolet (UV) radiation (UVR) exposure. One important human benefit of exposure to terrestrial solar UVB radiation (∼295 to 315 nm) is the cutaneous synthesis of vitamin D₃ that is initiated by the photoconversion of 7-dehydrocholesterol to previtamin D₃. An action spectrum for this process that is followed by other nonphotochemical steps to achieve biologically active vitamin D₃ has been established from ex vivo data and is widely used, although its validity has been questioned. We tested this action spectrum in vivo by full- or partial-body suberythemal irradiation of 75 healthy young volunteers with five different polychromatic UVR spectra on five serial occasions. Serum 25-hydroxyvitamin D₃ [25(OH) D₃] levels, as the most accurate measure of vitamin D₃ status, were assessed before, during, and after the exposures. These were then used to generate linear dose–response curves that were different for each UVR spectrum. It was established that the previtamin D₃ action spectrum was not valid when related to the serum 25(OH)D₃ levels, as weighting the UVR doses with this action spectrum did not result in a common regression line unless it was adjusted by a blue shift, with 5 nm giving the best fit. Such a blue shift is in accord with the published in vitro action spectra for vitamin D₃ synthesis. Thus, calculations regarding the risk (typically erythema) versus the benefit of exposure to solar UVR based on the ex vivo previtamin D₃ action spectrum require revision.
Detection of cutaneous malignant melanoma using RNA sampled by tape strips: A study protocol
Cutaneous malignant melanoma (CMM) is curable if detected in its early stages. However, the clinical recognition of CMM is challenging. An American research group has shown promising results in detecting CMM based on RNA profiles sampled from suspicious lesions with tape strips. We aim to further develop this technique and validate if RNA profiles sampled with tape strips can detect CMM. This prospective cohort study will include approximately 200 lesions clinically suspected of CMM requiring surgical removal. Tape stripping of the lesions will be performed just before surgical excision. Subsequently, RNA on the tape strips is analyzed using quantitative real-time polymerase chain reaction with TaqMan technology. The results are combined into a binary outcome where positive indicates CMM and negative indicates no CMM. The histopathological diagnosis of the lesions will be used as the gold standard. The main outcome is the results of the RNA test and the histopathological diagnosis, which, combined, provide the sensitivity and specificity of the test. The accuracy of the clinical examination in CMM diagnostics is limited. This clinical trial will explore the ability to use RNA analysis to improve the management of suspicious lesions by enhancing early diagnostic accuracy. Hopefully, it can reduce the number of benign lesions being surgically removed to rule out CMM and decrease patient morbidity. The project was approved by The Committee on Health Research Ethics of the Capital Region of Denmark (H-15010559) and registered at the Danish Data Protection Agency (BFH-2015-065).
Sunscreen use optimized by two consecutive applications
Sunscreen users are often inadequately protected and become sunburned. This study aimed to investigate how much two consecutive sunscreen applications increased the quantity of sunscreen applied and decreased the skin area left without sunscreen (missed area) compared to a single application. Thirty-one healthy volunteers wearing swimwear were included and applied sunscreen two consecutive times in a laboratory environment. Participants had pictures taken in black light before and after each application. As sunscreens absorb black light, the darkness of the skin increased with increasing amounts of sunscreen applied. We conducted a standard curve establishing a link between change in picture darkness and quantity of sunscreen. The quantity of sunscreen at selected skin sites as well as the percentage of missed area was determined after each application. Participants had missed a median of 20% of their available body surface after a single application. After double application they had missed 9%. The decrease in missed areas was significant for the whole body surface and for each of the body regions separately. The median participant had applied between 13% and 100% more sunscreen at the selected skin sites after double application than after single application. We recommend double application, especially before intense sun exposure.
Heavy Increase in Erythrocyte Protoporphyrin IX During Treatment with Teriflunomide in a Patient with Erythropoietic Protoporphyria: A Case Report
Background/Objectives: Patients with erythropoietic protoporphyria (EPP) have a decreased activity of the ferrochelatase enzyme which converts protoporphyrin IX (PpIX) into heme, causing PpIX to accumulate in erythrocytes. The ensuing release of PpIX to the skin when exposed to visible light causes a phototoxic reaction with severe pain, erythema, and edema. Erythrocyte PpIX levels in adult EPP patients are rather stable and largely unaffected by pharmaceutical treatments. It is important to be aware of drugs causing an increase in PpIX as this may increase the risk of liver toxicity. Method: The patient had blood samples taken regularly for analyses of PpIX, znPpIX, ALT, ALP, iron, leucocytes, C-reactive protein, and hemoglobin before, during, and after treatment with teriflunomide. Additionally, we tested if teriflunomide increased PpIX in vitro. Results: A female EPP patient was treated for 7 years with teriflunomide for multiple sclerosis attacks. During treatment, her natural PpIX level increased from about 30 µmol/L to about 200 µmol/L, without significant simultaneous changes in hemoglobin, iron levels, alanine transaminase (ALT), or alkaline phosphatase (ALP). The patient experienced no increase in photosensitivity. In vitro addition of teriflunomide did not affect PpIX levels. Discussion: In patients with lead intoxication, the release of PpIX from erythrocytes is very slow. The increase in PpIX during treatment with teriflunomide compared to periods with no medication could be caused by a similar slow PpIX release from the erythrocytes. This theory is supported by the patient’s unchanged light sensitivity and stable levels of hemoglobin, iron, and liver enzymes.
How Much Protoporphyrin IX Must Be Activated to Obtain Full Efficacy of Methyl Aminolevulinate Photodynamic Therapy? Implication for Treatment Modifications
Photodynamic therapy (PDT) with methyl aminolevulinate (MAL) is a popular treatment for actinic keratoses (AK), and several PDT treatment modalities with similar cure rates are in use. The effect relies on the activation of protoporphyrin IX (PpIX) in premalignant cells. This study aimed to measure PpIX during each treatment modality to determine the minimal PpIX activation and shortest exposure time for optimal cure rate. In four different treatment modalities, we established the PpIX formation up to three hours after MAL application without illumination and measured the speed of PpIX photoactivation during 9 min of red light (37 J/cm2). The level of PpIX three hours after MAL application was set to 100 PpIX units. In comparison, 85 PpIX units were formed during daylight PDT, 57 PpIX units during pulse PDT, and 52 PpIX units without any curettage prior to MAL. The activation of 50 PpIX units should, therefore, be enough to obtain a full effect on AK. Further, red light illumination may be shortened from 9 min to 1–2 min. The results indicate that PDT can be performed successfully with half the illumination time used in daylight PDT today and with one fourth of the illumination time used in classical PDT.
Anatomical Distribution of Ultraviolet Radiation Depends on Phototherapy Unit Design and on Personal Height and Body Mass
Phototherapy using ultraviolet radiation (UVR) treatment units of various designs is common in dermatology. The anatomical distribution of UVR should be even, regardless of individual body shapes. Using electronic dosimeters, we measured the irradiance at 31 body sites on 12 persons of different heights and body mass (BMI). Five different treatment unit designs were tested: cabinet units with standing patients, units with patients lying down, and a unit where patients rotated in front of flatly arranged UVR tubes. In treatment units with short tubes, persons taller than 170 cm received low irradiance on the face, neck, and shoulders. In cabinet-type units, higher BMI lowered the irradiance on the chest and belly. The relative standard deviation (RSD) of irradiance was smallest for the rotating unit, and for the unit with patients lying down while irradiated from above only. A higher RSD was found in the unit designs where patients stood inside cabinets, and where patients lay down and were simultaneously irradiated from both sides. In general, longer tubes lower the overall RSD. The irradiance of the different body areas is about 60% of the measured calibration values, but to avoid provoking any erythema, the treatment dose can only be increased by 10%.
A Skin Cancer Prophylaxis Study in Hairless Mice Using Methylene Blue, Riboflavin, and Methyl Aminolevulinate as Photosensitizing Agents in Photodynamic Therapy
The high incidence of sunlight-induced human skin cancers reveals a need for more effective photosensitizing agents. In this study, we compared the efficacy of prophylactic photodynamic therapy (PDT) when methylene blue (MB), riboflavin (RF), or methyl aminolevulinate (MAL) were used as photosensitizers. All mice in four groups of female C3.Cg/TifBomTac hairless immunocompetent mice (N = 100) were irradiated with three standard erythema doses of solar-simulated ultraviolet radiation (UVR) thrice weekly. Three groups received 2 × 2 prophylactic PDT treatments (days 45 + 52 and 90 + 97). The PDT treatments consisted of topical administration of 16% MAL, 20% MB, or 20% RF, and subsequent illumination that matched the photosensitizers’ absorption spectra. Control mice received no PDT. We recorded when the first, second, and third skin tumors developed. The pattern of tumor development after MB-PDT or RF-PDT was similar to that observed in irradiated control mice (p > 0.05). However, the median times until the first, second, and third skin tumors developed in mice given MAL-PDT were significantly delayed, compared with control mice (256, 265, and 272 vs. 215, 222, and 230 days, respectively; p < 0.001). Only MAL-PDT was an effective prophylactic treatment against UVR-induced skin tumors in hairless mice.
Systemic Absorption of the Sunscreens Benzophenone-3, Octyl-Methoxycinnamate, and 3-(4-Methyl-Benzylidene) Camphor After Whole-Body Topical Application and Reproductive Hormone Levels in Humans
Recent in vitro and animal studies have reported estrogen-like activity of chemicals used in sunscreen preparations. We investigated whether the three sunscreens benzophenone-3 (BP-3), octyl-methoxycinnamate (OMC), and 3-(4-methylbenzylidene) camphor (4-MBC) were absorbed and influenced endogenous reproductive hormone levels in humans after topical application. In this 2-wk single-blinded study 32 healthy volunteers, 15 young males and 17 postmenopausal females, were assigned to daily whole-body topical application of 2 mg per cm2 of basic cream formulation without (week 1) and with (week 2) the three sunscreens at 10% (wt/wt) of each. Maximum plasma concentrations were 200 ng per mL BP-3, 20 ng per mL 4-MBC, and 10 ng per mL OMC for females and 300 ng per mL BP-3, 20 ng per mL 4-MBC, and 20 ng per mL OMC for men. All three sunscreens were detectable in urine. The reproductive hormones FSH, LH were unchanged but minor differences in testosterone levels were observed between the 2 wk. A minor difference in serum estradiol and inhibin B levels were observed in men only. These differences in hormone levels were not related to sunscreen exposure.
Melanoma Diagnosis by Raman Spectroscopy and Neural Networks: Structure Alterations in Proteins and Lipids in Intact Cancer Tissue
Melanoma is the most aggressive skin cancer. The specificity and sensitivity of clinical diagnosis varies from around 40% to 80%. Here, we investigated whether the chemical changes in the melanoma tissue detected by Raman spectroscopy and neural networks can be used for diagnostic purposes. Near-infrared Fourier transform Raman spectra were obtained from samples of melanoma (n=22) and other skin tumors that can be clinically confused with melanoma: pigmented nevi (n=41), basal cell carcinoma (n=48), seborrheic keratoses (n=23), and normal skin (n=89). A sensitivity analysis of spectral frequencies used by a neural network was performed to determine the importance of the individual components in the Raman spectra. Visual inspection of the Raman spectra suggested that melanoma could be differentiated from pigmented nevi, basal cell carcinoma, seborrheic keratoses, and normal skin due to the decrease in the intensity of the amide I protein band around 1660 cm-1. Moreover, melanoma and basal cell carcinoma showed an increase in the intensity of the lipid-specific band peaks around 1310 cm-1 and 1330 cm-1, respectively. Band alterations used in the visual inspection were also independently identified by a neural network for melanoma diagnosis. The sensitivity and specificity for diagnosis of melanoma achieved by neural network analysis of Raman spectra were 85% and 99%, respectively. We propose that neural network analysis of near-infrared Fourier transform Raman spectra could provide a novel method for rapid, automated skin cancer diagnosis on unstained skin samples.
Repeated Treatments with Ingenol Mebutate Prevents Progression of UV-Induced Photodamage in Hairless Mice
Ingenol mebutate (IngMeb) is an effective treatment for actinic keratosis. In this study, we hypothesized that repeated treatments with IngMeb may prevent progression of UV-induced photodamage, and that concurrent application of a corticosteroid may reduce IngMeb-induced local skin responses (LSR). Hairless mice (n = 60; 3 groups of 20 mice) were irradiated with solar simulated ultraviolet radiation (UVR) throughout the study. Five single treatments with IngMeb were given at 4-week intervals (Days 21, 49, 77, 105, and 133). Clobetasol propionate (CP) was applied once daily for 5 days prior to each IngMeb application, as well as 6 h and 1 day post treatment. One week after IngMeb treatment No. 1, 3, and 5 (Days 28, 84, and 140), biopsies from four mice in each group were collected for histological evaluation of UV-damage on a standardized UV-damage scale (0-12). LSR (0-24) were assessed once daily (Days 1-7) after each IngMeb treatment. IngMeb prevented progression of photodamage in terms of keratosis grade, epidermal hypertrophy, dysplasia, and dermal actinic damage with a lower composite UV-damage score on day 140 (UVR 10.25 vs. UVR+IngMeb 6.00, p = 0.002) compared to UVR alone. IngMeb induced LSR, including erythema, flaking, crusting, bleeding, vesiculation, and ulceration. Concurrent CP increased LSR (max LSR Tx 1-5: UVR+IngMeb+CP 3.6-5.5 vs. UVR+IngMeb 2.6-4.3) and provided better prevention of photodamage compared to IngMeb alone (Day 140: UVR+IngMeb 6.00 vs. UVR+IngMeb+CP 3.00 p < 0.001). Repeated field-directed treatments with IngMeb prevent progression of cutaneous photodamage in hairless mice, while CP cannot be used to alleviate IngMeb-induced LSR. The findings suggest that IngMeb may potentially serve as a prophylactic treatment for UV-induced tumors.