Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
15 result(s) for "Wacheux, Christophe"
Sort by:
Convexity of Singular Affine Structures and Toric-Focus Integrable Hamiltonian Systems
This work is devoted to a systematic study of symplectic convexity for integrable Hamiltonian systems with elliptic and focus-focus singularities. A distinctive feature of these systems is that their base spaces are still smooth manifolds (with boundary and corners), analogous to the toric case, but their associated integral affine structures are singular, with non-trivial monodromy, due to focus singularities. We obtain a series of convexity results, both positive and negative, for such singular integral affine base spaces. In particular, near a focus singular point, they are locally convex and the local-global convexity principle still applies. They are also globally convex under some natural additional conditions. However, when the monodromy is sufficiently large, the local-global convexity principle breaks down and the base spaces can be globally non-convex, even for compact manifolds. As a surprising example, we construct a 2-dimensional “integral affine black hole”, which is locally convex but for which a straight ray from the center can never escape.
Asymptotics of action variables near semi-toric singularities
The presence of focus-focus singularities in semi-toric integrables Hamiltonian systems is one of the reasons why there cannot exist global Action-Angle coordinates on such systems. At focus-focus critical points, the Liouville-Arnold-Mineur theorem does not apply. In particular, the affine structure of the image of the moment map around has non-trivial monodromy. In this article, we establish that the singular behaviour and the multi-valuedness of the Action integrals is given by a complex logarithm. This extends a previous result by Vu Ngoc to any dimension. We also calculate the monodromy matrix for these systems.
Local model of semi-toric integrable systems: theory and applications
In this article we show how one can use the local models of integrable Hamiltonian systems near critical points to prove a localization theorem for certain singular loci of integrables semi-toric systems for dimension greater than 4.