Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
171
result(s) for
"Wada, Yoshihide"
Sort by:
Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation
by
Wada, Yoshihide
,
Mishra, Ashok K.
,
Konapala, Goutam
in
704/106
,
704/106/242
,
704/106/694/2739
2020
Both seasonal and annual mean precipitation and evaporation influence patterns of water availability impacting society and ecosystems. Existing global climate studies rarely consider such patterns from non-parametric statistical standpoint. Here, we employ a non-parametric analysis framework to analyze seasonal hydroclimatic regimes by classifying global land regions into nine regimes using late 20th century precipitation means and seasonality. These regimes are used to assess implications for water availability due to concomitant changes in mean and seasonal precipitation and evaporation changes using CMIP5 model future climate projections. Out of 9 regimes, 4 show increased precipitation variation, while 5 show decreased evaporation variation coupled with increasing mean precipitation and evaporation. Increases in projected seasonal precipitation variation in already highly variable precipitation regimes gives rise to a pattern of “seasonally variable regimes becoming more variable”. Regimes with low seasonality in precipitation, instead, experience increased wet season precipitation.
Adequate water availability is key to human and ecosystem sustainability. Here, the authors show that seasonally variable regimes become more variable, and the combined influence of seasonality and magnitude of climate variables will affect future water availability.
Journal Article
Relative Contribution of Monsoon Precipitation and Pumping to Changes in Groundwater Storage in India
2017
The depletion of groundwater resources threatens food and water security in India. However, the relative influence of groundwater pumping and climate variability on groundwater availability and storage remains unclear. Here we show from analyses of satellite and local well data spanning the past decade that long-term changes in monsoon precipitation are driving groundwater storage variability in most parts of India either directly by changing recharge or indirectly by changing abstraction. We find that groundwater storage has declined in northern India at the rate of 2 cm/yr and increased by 1 to 2 cm/yr in southern India between 2002 and 2013. We find that a large fraction of the total variability in groundwater storage in north-central and southern India can be explained by changes in precipitation. Groundwater storage variability in northwestern India can be explained predominantly by variability in abstraction for irrigation, which is in turn influenced by changes in precipitation. Declining precipitation in northern India is linked to Indian Ocean warming, suggesting a previously unrecognized teleconnection between ocean temperatures and groundwater storage.
Journal Article
South-to-North Water Diversion stabilizing Beijing’s groundwater levels
2020
Groundwater (GW) overexploitation is a critical issue in North China with large GW level declines resulting in urban water scarcity, unsustainable agricultural production, and adverse ecological impacts. One approach to addressing GW depletion was to transport water from the humid south. However, impacts of water diversion on GW remained largely unknown. Here, we show impacts of the central South-to-North Water Diversion on GW storage recovery in Beijing within the context of climate variability and other policies. Water diverted to Beijing reduces cumulative GW depletion by ~3.6 km
3
, accounting for 40% of total GW storage recovery during 2006–2018. Increased precipitation contributes similar volumes to GW storage recovery of ~2.7 km
3
(30%) along with policies on reduced irrigation (~2.8 km
3
, 30%). This recovery is projected to continue in the coming decade. Engineering approaches, such as water diversions, will increasingly be required to move towards sustainable water management.
The authors here address water sustainability in the greater area of Beijing, China. Specifically, the positive effects towards Beijing groundwater levels via water diversion from the Yangtze River to the North are shown.
Journal Article
Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity
by
Wagener, Thorsten
,
Wada, Yoshihide
,
Gleeson, Tom
in
Aquifers
,
Carbonate rocks
,
Climate variability
2017
Our environment is heterogeneous. In hydrological sciences, the heterogeneity of subsurface properties, such as hydraulic conductivities or porosities, exerts an important control on water balance. This notably includes groundwater recharge, which is an important variable for efficient and sustainable groundwater resources management. Current large-scale hydrological models do not adequately consider this subsurface heterogeneity. Here we show that regions with strong subsurface heterogeneity have enhanced present and future recharge rates due to a different sensitivity of recharge to climate variability compared with regions with homogeneous subsurface properties. Our study domain comprises the carbonate rock regions of Europe, Northern Africa, and the Middle East, which cover ∼25% of the total land area. We compare the simulations of two large-scale hydrological models, one of them accounting for subsurface heterogeneity. Carbonate rock regions strongly exhibit “karstification,” which is known to produce particularly strong subsurface heterogeneity. Aquifers from these regions contribute up to half of the drinking water supply for some European countries. Our results suggest that water management for these regions cannot rely on most of the presently available projections of groundwater recharge because spatially variable storages and spatial concentration of recharge result in actual recharge rates that are up to four times larger for present conditions and changes up to five times larger for potential future conditions than previously estimated. These differences in recharge rates for strongly heterogeneous regions suggest a need for groundwater management strategies that are adapted to the fast transit of water from the surface to the aquifers.
Journal Article
Hotspots for social and ecological impacts from freshwater stress and storage loss
2022
Humans and ecosystems are deeply connected to, and through, the hydrological cycle. However, impacts of hydrological change on social and ecological systems are infrequently evaluated together at the global scale. Here, we focus on the potential for social and ecological impacts from freshwater stress and storage loss. We find basins with existing freshwater stress are drying (losing storage) disproportionately, exacerbating the challenges facing the water stressed versus non-stressed basins of the world. We map the global gradient in social-ecological vulnerability to freshwater stress and storage loss and identify hotspot basins for prioritization (
n
= 168). These most-vulnerable basins encompass over 1.5 billion people, 17% of global food crop production, 13% of global gross domestic product, and hundreds of significant wetlands. There are thus substantial social and ecological benefits to reducing vulnerability in hotspot basins, which can be achieved through hydro-diplomacy, social adaptive capacity building, and integrated water resources management practices.
This work identifies the world’s most vulnerable basins to social and ecological impacts from freshwater stress and storage loss: a set of 168 hotspot basins for global prioritization that encompass 1.5 billion people, 17% of global food crops, 13% of global GDP, and hundreds of significant wetlands.
Journal Article
Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers
by
Famiglietti, James S.
,
Yang, Zong-Liang
,
Reager, John T.
in
704/106/694/2739
,
704/242
,
Anthropogenic factors
2020
Groundwater provides critical freshwater supply, particularly in dry regions where surface water availability is limited. Climate change impacts on GWS (groundwater storage) could affect the sustainability of freshwater resources. Here, we used a fully-coupled climate model to investigate GWS changes over seven critical aquifers identified as significantly distressed by satellite observations. We assessed the potential climate-driven impacts on GWS changes throughout the 21
st
century under the business-as-usual scenario (RCP8.5). Results show that the climate-driven impacts on GWS changes do not necessarily reflect the long-term trend in precipitation; instead, the trend may result from enhancement of evapotranspiration, and reduction in snowmelt, which collectively lead to divergent responses of GWS changes across different aquifers. Finally, we compare the climate-driven and anthropogenic pumping impacts. The reduction in GWS is mainly due to the combined impacts of over-pumping and climate effects; however, the contribution of pumping could easily far exceed the natural replenishment.
Climate change may impact groundwater storage and thus the availability of freshwater resources. Here the authors use climate models to examine seven aquifers and find that storage changes are primarily the result of enhancement of evapotranspiration, reduction in snowmelt, and over-pumping rather than long-term precipitation changes.
Journal Article
Global terrestrial water storage and drought severity under climate change
by
Satoh Yusuke
,
Gudmundsson Lukas
,
Müller, Schmied Hannes
in
21st century
,
Climate change
,
Climate change mitigation
2021
Terrestrial water storage (TWS) modulates the hydrological cycle and is a key determinant of water availability and an indicator of drought. While historical TWS variations have been increasingly studied, future changes in TWS and the linkages to droughts remain unexamined. Here, using ensemble hydrological simulations, we show that climate change could reduce TWS in many regions, especially those in the Southern Hemisphere. Strong inter-ensemble agreement indicates high confidence in the projected changes that are driven primarily by climate forcing rather than land and water management activities. Declines in TWS translate to increases in future droughts. By the late twenty-first century, the global land area and population in extreme-to-exceptional TWS drought could more than double, each increasing from 3% during 1976–2005 to 7% and 8%, respectively. Our findings highlight the importance of climate change mitigation to avoid adverse TWS impacts and increased droughts, and the need for improved water resource management and adaptation.Projections of terrestrial water storage (TWS)—the sum of all continental water—are key to water resource and drought estimates. A hydrological model ensemble predicts climate warming will more than double the land area and population exposed to extreme TWS drought by the late twenty-first century.
Journal Article
Irrigation of biomass plantations may globally increase water stress more than climate change
by
Gerten, Dieter
,
Stenzel, Fabian
,
Wada, Yoshihide
in
704/106/242
,
704/106/694/1108
,
704/106/694/2739/2807
2021
Bioenergy with carbon capture and storage (BECCS) is considered an important negative emissions (NEs) technology, but might involve substantial irrigation on biomass plantations. Potential water stress resulting from the additional withdrawals warrants evaluation against the avoided climate change impact. Here we quantitatively assess potential side effects of BECCS with respect to water stress by disentangling the associated drivers (irrigated biomass plantations, climate, land use patterns) using comprehensive global model simulations. By considering a widespread use of irrigated biomass plantations, global warming by the end of the 21st century could be limited to 1.5 °C compared to a climate change scenario with 3 °C. However, our results suggest that both the global area and population living under severe water stress in the BECCS scenario would double compared to today and even exceed the impact of climate change. Such side effects of achieving substantial NEs would come as an extra pressure in an already water-stressed world and could only be avoided if sustainable water management were implemented globally.
The authors here model how water stress would be affected either by biomass plantations combined with carbon capture and storage (BECCS) in a strong climate mitigation scenario (1.5 °C warming in 2100) or by climate impacts in a strong climate change scenario (3 °C warming in 2100).
Journal Article
Non-renewable groundwater use and groundwater depletion: a review
2019
Population growth, economic development, and dietary changes have drastically increased the demand for food and water. The resulting expansion of irrigated agriculture into semi-arid areas with limited precipitation and surface water has greatly increased the dependence of irrigated crops on groundwater withdrawal. Also, the increasing number of people living in mega-cities without access to clean surface water or piped drinking water has drastically increased urban groundwater use. The result of these trends has been the steady increase of the use of non-renewable groundwater resources and associated high rates of aquifer depletion around the globe. We present a comprehensive review of the state-of-the-art in research on non-renewable groundwater use and groundwater depletion. We start with a section defining the concepts of non-renewable groundwater, fossil groundwater and groundwater depletion and place these concepts in a hydrogeological perspective. We pay particular attention to the interaction between groundwater withdrawal, recharge and surface water which is critical to understanding sustainable groundwater withdrawal. We provide an overview of methods that have been used to estimate groundwater depletion, followed by an extensive review of global and regional depletion estimates, the adverse impacts of groundwater depletion and the hydroeconomics of groundwater use. We end this review with an outlook for future research based on main research gaps and challenges identified. This review shows that both the estimates of current depletion rates and the future availability of non-renewable groundwater are highly uncertain and that considerable data and research challenges need to be overcome if we hope to reduce this uncertainty in the near future.
Journal Article
Global resource potential of seasonal pumped hydropower storage for energy and water storage
2020
Seasonal mismatches between electricity supply and demand is increasing due to expanded use of wind, solar and hydropower resources, which in turn raises the interest on low-cost seasonal energy storage options. Seasonal pumped hydropower storage (SPHS) can provide long-term energy storage at a relatively low-cost and co-benefits in the form of freshwater storage capacity. We present the first estimate of the global assessment of SPHS potential, using a novel plant-siting methodology based on high-resolution topographical and hydrological data. Here we show that SPHS costs vary from 0.007 to 0.2 US$ m
−1
of water stored, 1.8 to 50 US$ MWh
−1
of energy stored and 370 to 600 US$ kW
−1
of installed power generation. This potential is unevenly distributed with mountainous regions demonstrating significantly more potential. The estimated world energy storage capacity below a cost of 50 US$ MWh
−1
is 17.3 PWh, approximately 79% of the world electricity consumption in 2017.
The potential of seasonal pumped hydropower storage (SPHS) plant to fulfil future energy storage requirements is vast in mountainous regions. Here the authors show that SPHS costs vary from 0.007 to 0.2 US$ m
−3
of water stored, 1.8 to 50 US$ MWh
−1
of energy stored and 0.37 to 0.6 US$ GW
−1
of installed power generation capacity.
Journal Article