Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
83
result(s) for
"Wakeford, H. R."
Sort by:
Helium in the eroding atmosphere of an exoplanet
2018
Helium is the second-most abundant element in the Universe after hydrogen and is one of the main constituents of gas-giant planets in our Solar System. Early theoretical models predicted helium to be among the most readily detectable species in the atmospheres of exoplanets, especially in extended and escaping atmospheres
1
. Searches for helium, however, have hitherto been unsuccessful
2
. Here we report observations of helium on an exoplanet, at a confidence level of 4.5 standard deviations. We measured the near-infrared transmission spectrum of the warm gas giant
3
WASP-107b and identified the narrow absorption feature of excited metastable helium at 10,833 angstroms. The amplitude of the feature, in transit depth, is 0.049 ± 0.011 per cent in a bandpass of 98 angstroms, which is more than five times greater than what could be caused by nominal stellar chromospheric activity. This large absorption signal suggests that WASP-107b has an extended atmosphere that is eroding at a total rate of 10
10
to 3 × 10
11
grams per second (0.1–4 per cent of its total mass per billion years), and may have a comet-like tail of gas shaped by radiation pressure.
A detection of helium absorption at 10,833 Å on the exoplanet WASP-107b reveals that its atmosphere is extended and eroding, and demonstrates a new way to study upper exoplanetary atmospheres.
Journal Article
The exoplanet perspective on future ice giant exploration
2020
Exoplanets number in their thousands, and the number is ever increasing with the advent of new surveys and improved instrumentation. One of the most surprising things we have learnt from these discoveries is not that small-rocky planets in their stars habitable zones are likely to be common, but that the most typical size of exoplanets is that not seen in our solar system—radii between that of Neptune and the Earth dubbed mini-Neptunes and super-Earths. In fact, a transiting exoplanet is four times as likely to be in this size regime than that of any giant planet in our solar system. Investigations into the atmospheres of giant hydrogen/helium dominated exoplanets has pushed down to Neptune and mini-Neptune-sized worlds revealing molecular absorption from water, scattering and opacity from clouds, and measurements of atmospheric abundances. However, unlike measurements of Jupiter, or even Saturn sized worlds, the smaller giants lack a ground truth on what to expect or interpret from their measurements. How did these sized worlds form and evolve and was it different from their larger counterparts? What is their internal composition and how does that impact their atmosphere? What informs the energy budget of these distant worlds? In this we discuss what characteristics we can measure for exoplanets, and why a mission to the ice giants in our solar system is the logical next step for understanding exoplanets. This article is part of a discussion meeting issue ‘Future exploration of ice giant systems’.
Journal Article
An absolute sodium abundance for a cloud-free ‘hot Saturn’ exoplanet
2018
Broad absorption signatures from alkali metals, such as the sodium (Na
i
) and potassium (K
i
) resonance doublets, have long been predicted in the optical atmospheric spectra of cloud-free irradiated gas giant exoplanets
1
–
3
. However, observations have revealed only the narrow cores of these features rather than the full pressure-broadened profiles
4
–
6
. Cloud and haze opacity at the day–night planetary terminator are considered to be responsible for obscuring the absorption-line wings, which hinders constraints on absolute atmospheric abundances
7
–
9
. Here we report an optical transmission spectrum for the ‘hot Saturn’ exoplanet WASP-96b obtained with the Very Large Telescope, which exhibits the complete pressure-broadened profile of the sodium absorption feature. The spectrum is in excellent agreement with cloud-free, solar-abundance models assuming chemical equilibrium. We are able to measure a precise, absolute sodium abundance of log
ε
Na
=
6.9
-
0.4
+
0.6
, and use it as a proxy for the planet’s atmospheric metallicity relative to the solar value (
Z
p
/
Z
ʘ
=
2.3
-
1.7
+
8.9
). This result is consistent with the mass–metallicity trend observed for Solar System planets and exoplanets
10
–
12
.
The optical transmission spectrum for the ‘hot Saturn’ exoplanet WASP-96b reveals a clear atmosphere, an atmospheric sodium abundance and hence its metallicity, which is consistent with the metallicity trend observed in Solar System planets and exoplanets.
Journal Article
Atmospheric reconnaissance of the habitable-zone Earth-sized planets orbiting TRAPPIST-1
2018
Seven temperate Earth-sized exoplanets readily amenable for atmospheric studies transit the nearby ultracool dwarf star TRAPPIST-1 (refs
1
,
2
). Their atmospheric regime is unknown and could range from extended primordial hydrogen-dominated to depleted atmospheres
3
–
6
. Hydrogen in particular is a powerful greenhouse gas that may prevent the habitability of inner planets while enabling the habitability of outer ones
6
–
8
. An atmosphere largely dominated by hydrogen, if cloud-free, should yield prominent spectroscopic signatures in the near-infrared detectable during transits. Observations of the innermost planets have ruled out such signatures
9
. However, the outermost planets are more likely to have sustained such a Neptune-like atmosphere
10
,
11
. Here, we report observations for the four planets within or near the system’s habitable zone, the circumstellar region where liquid water could exist on a planetary surface
12
–
14
. These planets do not exhibit prominent spectroscopic signatures at near-infrared wavelengths either, which rules out cloud-free hydrogen-dominated atmospheres for TRAPPIST-1 d, e and f, with significance of 8σ, 6σ and 4σ, respectively. Such an atmosphere is instead not excluded for planet g. As high-altitude clouds and hazes are not expected in hydrogen-dominated atmospheres around planets with such insolation
15
,
16
, these observations further support their terrestrial and potentially habitable nature.
Hubble observations of the TRAPPIST-1 system exclude the presence of H
2
-dominated cloud-free atmospheres for the three planets within or around the system’s habitable zone. This result supports the hypothesis that these planets are terrestrial in nature.
Journal Article
The exoplanet perspective on future ice giant exploration
2020
Exoplanets number in their thousands, and the number is ever increasing with the advent of new surveys and improved instrumentation. One of the most surprising things we have learnt from these discoveries is not that small-rocky planets in their stars habitable zones are likely to be common, but that the most typical size of exoplanets is that not seen in our solar system—radii between that of Neptune and the Earth dubbed mini-Neptunes and super-Earths. In fact, a transiting exoplanet is four times as likely to be in this size regime than that of any giant planet in our solar system. Investigations into the atmospheres of giant hydrogen/helium dominated exoplanets has pushed down to Neptune and mini-Neptune-sized worlds revealing molecular absorption from water, scattering and opacity from clouds, and measurements of atmospheric abundances. However, unlike measurements of Jupiter, or even Saturn sized worlds, the smaller giants lack a ground truth on what to expect or interpret from their measurements. How did these sized worlds form and evolve and was it different from their larger counterparts? What is their internal composition and how does that impact their atmosphere? What informs the energy budget of these distant worlds? In this we discuss what characteristics we can measure for exoplanets, and why a mission to the ice giants in our solar system is the logical next step for understanding exoplanets.
This article is part of a discussion meeting issue ‘Future exploration of ice giant systems’.
Journal Article
The Exoplanet Perspective on Future Ice Giant Exploration
2020
Exoplanets number in their thousands, and the number is ever increasing with the advent of new surveys and improved instrumentation. One of the most surprising things we have learnt from these discoveries is not that small-rocky planets in their stars habitable zones are likely common, but that the most typical size of exoplanet is that not seen in our solar system - radii between that of Neptune and the Earth dubbed mini-Neptunes and super-Earths. In fact, a transiting exoplanet is four times as likely to be in this size regime than that of any giant planet in our solar system. Investigations into the atmospheres of giant hydrogen/helium dominated exoplanets has pushed down to Neptune and mini-Neptune sized worlds revealing molecular absorption from water, scattering and opacity from clouds, and measurements of atmospheric abundances. However, unlike measurements of Jupiter, or even Saturn sized worlds, the smaller giants lack a ground truth on what to expect or interpret from their measurements. How did these sized worlds form and evolve and was it different from their larger counterparts? What is their internal composition and how does that impact their atmosphere? What informs the energy budget of these distant worlds? In this we discuss what characteristics we can measure for exoplanets, and why a mission to the ice giants in our solar system is the logical next step for understanding exoplanets.
HST/WFC3 transmission spectroscopy of the cold rocky planet TRAPPIST-1h
2022
TRAPPIST-1 is a nearby ultra-cool dwarf star transited by seven rocky planets. We observed three transits of its outermost planet, TRAPPIST-1h, using the G141 grism of the Wide Field Camera 3 instrument aboard the Hubble Space Telescope to place constraints on its potentially cold atmosphere. In order to deal with the effect of stellar contamination, we model TRAPPIST-1 active regions as portions of a cooler and a hotter photosphere, and generate multi-temperature models that we compare to the out-of-transit spectrum of the star. Using the inferred spot parameters, we produce corrected transmission spectra for planet h under five transit configurations and compare these data to planetary atmospheric transmission models using the forward model CHIMERA. Our analysis reveals that TRAPPIST-1h is unlikely to host an aerosol-free H/He-dominated atmosphere. While the current data precision limits the constraints we can put on the planetary atmosphere, we find that the likeliest scenario is that of a flat, featureless transmission spectrum in the WFC3/G141 bandpass due to a high mean molecular weight atmosphere (>1000x solar), no atmosphere, or an opaque aerosol layer, all in absence of stellar contamination. This work outlines the limitations of modeling active photospheric regions with theoretical stellar spectra, and those brought by our lack of knowledge of the photospheric structure of ultracool dwarf stars. Further characterization of the planetary atmosphere of TRAPPIST-1h would require higher precision measurements over wider wavelengths, which will be possible with the James Webb Space Telescope.
The Hubble PanCET program: Emission spectrum of hot Jupiter HAT-P-41b
by
Dos Santos, Leonardo A
,
Sing, David K
,
Wakeford, H R
in
Blackbody
,
Chemical composition
,
Emission
2022
We present the most complete emission spectrum for inflated hot Jupiter HAT-P-41b combining new HST WFC/G141 spectrum from the Hubble Panchromatic Comparative Exoplanet Treasury (PanCET) program with archival Spitzer eclipse observations. We found a near blackbody-like emission spectrum which is best fitted with an isothermal temperature-pressure (TP) profile that agrees well with the dayside heat redistribution scenario assuming zero Bond albedo. The non-inverted TP profile is consistent with the non-detection of NUV/optical absorbers in the transit spectra. We do not find any evidence for significant H\\(^-\\) opacity nor a metal-rich atmosphere. HAT-P-41b is an ideal target that sits in the transitioning parameter space between hot and ultra-hot Jupiters, and future JWST observations will help us to better constrain the thermal structure and chemical composition.
JWST-TST Proper Motions: I. High-Precision NIRISS Calibration and Large Magellanic Cloud Kinematics
2023
We develop and disseminate effective point-spread functions and geometric-distortion solutions for high-precision astrometry and photometry with the JWST NIRISS instrument. We correct field dependencies and detector effects, and assess the quality and the temporal stability of the calibrations. As a scientific application and validation, we study the proper motion (PM) kinematics of stars in the JWST calibration field near the Large Magellanic Cloud (LMC) center, comparing to a first-epoch Hubble Space Telescope (HST) archival catalog with a 16-yr baseline. For stars with G~20, the median PM uncertainty is ~13 \\(\\mu\\)as yr\\(^{-1}\\) (3.1 km s\\(^{-1}\\)), better than Gaia DR3 typically achieves for its very best-measured stars. We kinematically detect the known star cluster OGLE-CL LMC 407, measure its absolute PM for the first time, and show how this differs from other LMC populations. The inferred cluster dispersion sets an upper limit of 24 \\(\\mu\\)as yr\\(^{-1}\\) (5.6 km s\\(^{-1}\\)) on systematic uncertainties. Red-giant-branch stars have a velocity dispersion of 33.8 \\(\\pm\\) 0.6 km s\\(^{-1}\\), while younger blue populations have a narrower velocity distribution, but with a significant kinematical substructure. We discuss how this relates to the larger velocity dispersions inferred from Gaia DR3. These results establish JWST as capable of state-of-the-art astrometry, building on the extensive legacy of HST. This is the first paper in a series by our JWST Telescope Scientist Team (TST), in which we will use Guaranteed Time Observations to study the PM kinematics of various stellar systems in the Local Group.
A Comprehensive Analysis of WASP-17b's Transmission Spectrum from Space-Based Observations
2022
Due to its 1770 K equilibrium temperature, WASP-17b, a 1.99 \\(R_\\mathrm{Jup}\\), 0.486 \\(M_\\mathrm{Jup}\\) exoplanet, sits at the critical juncture between hot and ultra-hot Jupiters. We present its 0.3-5 \\(\\mu m\\) transmission spectrum, with newly obtained with Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) measurements, and, taking advantage of improved analysis techniques, reanalysed HST Space Telescope Imaging Spectrograph (STIS) and Spitzer Space Telescope Infrared Array Camera (IRAC) observations. We achieve a median precision of 132 ppm, with a mean of 272 ppm across the whole spectrum. We additionally make use of Transiting Exoplanet Survey Satellite (TESS) and ground-based transit observations to refine the orbital period of WASP-17b. To interpret the observed atmosphere, we make use of free and equilibrium chemistry retrievals using the POSEIDON and ATMO retrieval codes respectively. We detect absorption due to H\\(_2\\)O at \\(>7 \\sigma\\), and find evidence of absorption due to CO\\(_2\\) at \\(>3 \\sigma\\). We see no evidence of previously detected Na and K absorption. Across an extensive suite of retrieval configurations, we find the data favours a bimodal solution with high or low metallicity modes as a result of poor constraints in the optical, and demonstrate the importance of using multiple statistics for model selection. Future James Webb Space Telescope (JWST) GTO observations, combined with the presented transmission spectrum, will enable precise constraints on WASP-17b's atmosphere.