Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
23
result(s) for
"Waldock, Conor"
Sort by:
The geography of biodiversity change in marine and terrestrial assemblages
2019
Human activities are fundamentally altering biodiversity. Projections of declines at the global scale are contrasted by highly variable trends at local scales, suggesting that biodiversity change may be spatially structured. Here, we examined spatial variation in species richness and composition change using more than 50,000 biodiversity time series from 239 studies and found clear geographic variation in biodiversity change. Rapid compositional change is prevalent, with marine biomes exceeding and terrestrial biomes trailing the overall trend. Assemblage richness is not changing on average, although locations exhibiting increasing and decreasing trends of up to about 20% per year were found in some marine studies. At local scales, widespread compositional reorganization is most often decoupled from richness change, and biodiversity change is strongest and most variable in the oceans.
Journal Article
A quantitative review of abundance‐based species distribution models
by
Cheung, William W. L.
,
Waldock, Conor
,
Edgar, Graham J.
in
Abundance
,
abundance-based species distribution model
,
Biodiversity
2022
The contributions of species to ecosystem functions or services depend not only on their presence but also on their local abundance. Progress in predictive spatial modelling has largely focused on species occurrence rather than abundance. As such, limited guidance exists on the most reliable methods to explain and predict spatial variation in abundance. We analysed the performance of 68 abundance‐based species distribution models fitted to 800 000 standardised abundance records for more than 800 terrestrial bird and reef fish species. We found a large amount of variation in the performance of abundance‐based models. While many models performed poorly, a subset of models consistently reconstructed range‐wide abundance patterns. The best predictions were obtained using random forests for frequently encountered and abundant species and for predictions within the same environmental domain as model calibration. Extending predictions of species abundance outside of the environmental conditions used in model training generated poor predictions. Thus, interpolation of abundances between observations can help improve understanding of spatial abundance patterns, but our results indicate extrapolated predictions of abundance under changing climate have a much greater uncertainty. Our synthesis provides a road map for modelling abundance patterns, a key property of species distributions that underpins theoretical and applied questions in ecology and conservation.
Journal Article
Species richness and identity both determine the biomass of global reef fish communities
by
Agrawal, Aneil F.
,
Lefcheck, Jonathan S.
,
Duffy, J. Emmett
in
631/158/853
,
631/829
,
704/158/670
2021
Changing biodiversity alters ecosystem functioning in nature, but the degree to which this relationship depends on the taxonomic identities rather than the number of species remains untested at broad scales. Here, we partition the effects of declining species richness and changing community composition on fish community biomass across >3000 coral and rocky reef sites globally. We find that high biodiversity is 5.7x more important in maximizing biomass than the remaining influence of other ecological and environmental factors. Differences in fish community biomass across space are equally driven by both reductions in the total number of species and the disproportionate loss of larger-than-average species, which is exacerbated at sites impacted by humans. Our results confirm that sustaining biomass and associated ecosystem functions requires protecting diversity, most importantly of multiple large-bodied species in areas subject to strong human influences.
Species identity and richness both contribute biodiversity-ecosystem functioning relationships. Here the authors apply a decomposition approach inspired by the Price equation to a global dataset of reef fish community biomass, finding that increased richness and community compositions favouring large-bodied species enhance biomass.
Journal Article
Deconstructing the geography of human impacts on species’ natural distribution
2024
It remains unknown how species’ populations across their geographic range are constrained by multiple coincident natural and anthropogenic environmental gradients. Conservation actions are likely undermined without this knowledge because the relative importance of the multiple anthropogenic threats is not set within the context of the natural determinants of species’ distributions. We introduce the concept of a species ‘
shadow distribution
’ to address this knowledge gap, using explainable artificial intelligence to deconstruct the environmental building blocks of current species distributions. We assess shadow distributions for multiple threatened freshwater fishes in Switzerland which indicated how and where species respond negatively to threats — with negative threat impacts covering 88% of locations inside species’ environmental niches leading to a 25% reduction in environmental suitability. Our findings highlight that conservation of species’ geographic distributions is likely insufficient when biodiversity mapping is based on species distribution models, or threat mapping, without also quantifying species’ expected or shadow distributions. Overall, we show how priority actions for nature’s recovery can be identified and contextualised within the multiple natural constraints on biodiversity to better meet national and international biodiversity targets.
Explainable Artificial Intelligence can improve conservation decisions by revealing hidden insights to where human impacts on biodiversity are greatest. In this investigation of freshwater fish in Switzerland, around 90% of potentially habitable areas were negatively impacted human influences - these areas form the species’ “shadow distribution”.
Journal Article
Temperature-related biodiversity change across temperate marine and terrestrial systems
by
Antão, Laura H.
,
Blowes, Shane A.
,
Bates, Amanda E.
in
631/158/2165
,
631/158/670
,
631/158/851
2020
Climate change is reshaping global biodiversity as species respond to changing temperatures. However, the net effects of climate-driven species redistribution on local assemblage diversity remain unknown. Here, we relate trends in species richness and abundance from 21,500 terrestrial and marine assemblage time series across temperate regions (23.5–60.0° latitude) to changes in air or sea surface temperature. We find a strong coupling between biodiversity and temperature changes in the marine realm, where species richness mostly increases with warming. However, biodiversity responses are conditional on the baseline climate, such that in initially warmer locations richness increase is more pronounced while abundance declines with warming. In contrast, we do not detect systematic temperature-related richness or abundance trends on land, despite a greater magnitude of warming. As the world is committed to further warming, substantial challenges remain in maintaining local biodiversity amongst the non-uniform inflow and outflow of ‘climate migrants’. Temperature-driven community restructuring is especially evident in the ocean, whereas climatic debt may be accumulating on land.
Biodiversity time series from temperate regions reveal that marine communities in warmer places gain species but lose individuals with warming, but colder environments show weaker trends, whereas no systematic relationships between biodiversity and temperature change were detectable for terrestrial communities.
Journal Article
Fish heating tolerance scales similarly across individual physiology and populations
2021
Extrapolating patterns from individuals to populations informs climate vulnerability models, yet biological responses to warming are uncertain at both levels. Here we contrast data on the heating tolerances of fishes from laboratory experiments with abundance patterns of wild populations. We find that heating tolerances in terms of individual physiologies in the lab and abundance in the wild decline with increasing temperature at the same rate. However, at a given acclimation temperature or optimum temperature, tropical individuals and populations have broader heating tolerances than temperate ones. These congruent relationships implicate a tight coupling between physiological and demographic processes underpinning macroecological patterns, and identify vulnerability in both temperate and tropical species.Nicholas Payne et al. use physiological and population-level abundance data from 823 fish species to examine how heating tolerance scales at both the individual and population level. This study shows that heating tolerance declines in the lab and the wild at the same rate, and for a given temperature, individuals and populations from tropical areas have broader heating tolerances than temperate species.
Journal Article
Diversity across organisational scale emerges through dispersal ability and speciation dynamics in tropical fish
2023
Background
Biodiversity exists at different levels of organisation: e.g. genetic, individual, population, species, and community. These levels of organisation all exist within the same system, with diversity patterns emerging across organisational scales through several key processes. Despite this inherent interconnectivity, observational studies reveal that diversity patterns across levels are not consistent and the underlying mechanisms for variable continuity in diversity across levels remain elusive. To investigate these mechanisms, we apply a spatially explicit simulation model to simulate the global diversification of tropical reef fishes at both the population and species levels through emergent population-level processes.
Results
We find significant relationships between the population and species levels of diversity which vary depending on both the measure of diversity and the spatial partitioning considered. In turn, these population-species relationships are driven by modelled biological trait parameters, especially the divergence threshold at which populations speciate.
Conclusions
To explain variation in multi-level diversity patterns, we propose a simple, yet novel, population-to-species diversity partitioning mechanism through speciation which disrupts continuous diversity patterns across organisational levels. We expect that in real-world systems this mechanism is driven by the molecular dynamics that determine genetic incompatibility, and therefore reproductive isolation between individuals. We put forward a framework in which the mechanisms underlying patterns of diversity across organisational levels are universal, and through this show how variable patterns of diversity can emerge through organisational scale.
Journal Article
Micronutrient levels of global tropical reef fish communities differ from fisheries capture
by
Beger, Maria
,
Ahouansou Montcho, Simon
,
Loiseau, Nicolas
in
Biodiversity
,
biodiversity modelling
,
Biomass
2025
The exceptional diversity of shallow‐water marine fishes contributes to the nutrition of millions of people worldwide through coastal wild‐capture fisheries, with different species having diverse nutritional profiles. Fishes in ecosystems are reservoirs of micronutrients with benefits to human health. Yet, the amount of micronutrients contained in fish species on coral reefs and in shallow tropical waters is challenging to estimate, and the micronutrients caught by fisheries remain uncertain. To assess whether micronutrient deficiencies could be addressed through specific fisheries management actions, we first require a quantification of the potentially available micronutrients contained in biodiverse reef fish assemblages. Here, we therefore undertake a broad heuristic assessment of available micronutrients on tropical reefs using ensemble species distribution modelling and identify potential mismatches with micronutrients derived from summarising coastal fisheries landings data. We find a mismatch between modelled estimates of micronutrients available in the ecosystem on the one hand and the micronutrients in small‐scale fisheries landings data. Fisheries had lower micronutrients than expected from fishes in the modelled assemblage. Further, fisheries were selective for vitamin A, thus resulting in a trade‐off with other micronutrients. Our results remained unchanged after accounting for the under‐sampling of fish communities and under‐reporting of small‐scale fisheries catches—two major sources of uncertainty. This reported mismatch indicates that current estimates of fished micronutrients are not adequate to fully assess micronutrient inventories. However, small‐scale fisheries in some countries were already selective towards micronutrient mass, indicating policies that target improved access, distribution and consumption of fish could leverage this existing high micronutrient mass. Enhanced taxonomic resolution of catches and biodiversity inventories using localised species consumption surveys could improve understanding of nature‐people linkages. Improving fisheries reporting and monitoring of reef fish assemblages will advance the understanding of micronutrient mismatches, which overall indicate a weak uptake of nutritional goals in fisheries practices. The decoupling between micronutrients in ecosystems and in fisheries catches indicates that social, economic, and biodiversity management goals are not shaped around nutritional targets—but this is key to achieve a sustainable and healthy planet for both people and nature. Read the free Plain Language Summary for this article on the Journal blog. Read the free Plain Language Summary for this article on the Journal blog.
Journal Article
Temperature-Driven Biodiversity Change
2018
Temperature regimes have multiple spatial and temporal dimensions that have different impacts on biodiversity. Signatures of warming across these dimensions may contribute uniquely to the large-scale species redistributions and abundance changes that underpin community dynamics. A comprehensive review of the literature reveals that 86% of studies were focused on community responses to temperature aggregated over spatial or temporal dimensions (e.g., mean, median, or extremes). Therefore, the effects of temperature variation in space and time on biodiversity remain generally unquantified. In the present article, we argue that this focus on aggregated temperature measures may limit advancing our understanding of how communities are being altered by climate change. In light of this, we map the cause-and-effect pathways between the different dimensions of temperature change and communities in space and time. A broadened focus, shifted toward a multidimensional perspective of temperature, will allow better interpretation and prediction of biodiversity change and more robust management and conservation strategies.
Journal Article