Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
31 result(s) for "Walker, Constance E."
Sort by:
The high optical brightness of the BlueWalker 3 satellite
Large constellations of bright artificial satellites in low Earth orbit pose significant challenges to ground-based astronomy 1 . Current orbiting constellation satellites have brightnesses between apparent magnitudes 4 and 6, whereas in the near-infrared Ks band, they can reach magnitude 2 (ref. 2 ). Satellite operators, astronomers and other users of the night sky are working on brightness mitigation strategies 3 , 4 . Radio emissions induce further potential risk to ground-based radio telescopes that also need to be evaluated. Here we report the outcome of an international optical observation campaign of a prototype constellation satellite, AST SpaceMobile’s BlueWalker 3. BlueWalker 3 features a 64.3 m 2 phased-array antenna as well as a launch vehicle adaptor (LVA) 5 . The peak brightness of the satellite reached an apparent magnitude of 0.4. This made the new satellite one of the brightest objects in the night sky. Additionally, the LVA reached an apparent V-band magnitude of 5.5, four times brighter than the current International Astronomical Union recommendation of magnitude 7 (refs. 3 , 6 ); it jettisoned on 10 November 2022 (Universal Time), and its orbital ephemeris was not publicly released until 4 days later. The expected build-out of constellations with hundreds of thousands of new bright objects 1 will make active satellite tracking and avoidance strategies a necessity for ground-based telescopes. We report the outcome of an international optical observation campaign of a prototype constellation satellite, AST SpaceMobile’s BlueWalker 3, which features a 64.3 m 2 phased-array antenna and a launch vehicle adaptor.
Citizen Science Provides Valuable Data for Monitoring Global Night Sky Luminance
The skyglow produced by artificial lights at night is one of the most dramatic anthropogenic modifications of Earth's biosphere. The GLOBE at Night citizen science project allows individual observers to quantify skyglow using star maps showing different levels of light pollution. We show that aggregated GLOBE at Night data depend strongly on artificial skyglow and could be used to track lighting changes worldwide. Naked eye time series can be expected to be very stable, due to the slow pace of human eye evolution. The standard deviation of an individual GLOBE at Night observation is found to be 1.2 stellar magnitudes. Zenith skyglow estimates from the “First World Atlas of Artificial Night Sky Brightness” are tested using a subset of the GLOBE at Night data. Although we find the World Atlas overestimates sky brightness in the very center of large cities, its predictions for Milky Way visibility are accurate.
Turn on the Night! Science and Education on Dark Skies Issues
The “Turn on the Night” associated event had presentations on the latest dark skies protection issues considered by the IAU’s Dark and Quiet Skies working groups. Presentations were also made on dark skies education programs and cultural/scientific heritage.
Session 21.7 – Education Programs Promoting Light Pollution Awareness and IYL2015
By proclaiming the IYL2015, the United Nations recognized the importance of light and light based technology in the lives of the citizens of the world and for the development of global society on many levels. Light and application of light science and technology are vital for existing and future advances in many scientific areas and culture. Light is a key element in astronomy: as astronomers, it is what we study and makes our science possible, but it is also what threatens our observations when it is set-off from the ground (light pollution). The UN-designated year 2015 represented a magnificent and unique opportunity for the global astronomical community to disseminate these messages and raise the awareness of the importance and preservation of dark skies for heritage and the natural environment. As such, the International Year of Light served as a launching pad for several projects during 2015. Two other projects with equally as impressive programs are highlighted and begin the narrative for this section on public education and outreach programs on light pollution issues and solutions.
The Quality Lighting Teaching Kit: Utilizing Problem-Based Learning in Classrooms
The U.S. National Optical Astronomy Observatory’s Education and Public Outreach group has produced a Quality Lighting Teaching Kit. The kits are designed around problem-based learning scenarios. The kit’s six activities allow students to address real lighting problems that relate to wildlife, sky glow, aging eyes, energy consumption, safety, and light trespass. The activities are optimized for 11-16 year olds. As part of the IAU100 celebration, the kits will be manufactured and made available to observatories and communities around the world.
Dark Skies Africa
The first IAU Office of Astronomy for Development Task Force 3 project on light pollution is described along with evaluations and recommendations for future projects.
The Impact of Light Pollution Education through a Global Star-Hunting Campaign & Classroom Curricula
Results of a survey assessing the impact on respondents and their students from the worldwide, citizen-science light pollution campaign called GLOBE at Night and the accompanying environmental-astronomy-based curricula called Dark Skies Rangers are presented.
Worldwide variations in artificial skyglow
Despite constituting a widespread and significant environmental change, understanding of artificial nighttime skyglow is extremely limited. Until now, published monitoring studies have been local or regional in scope and typically of short duration. In this first major international compilation of monitoring data we answer several key questions about skyglow properties. Skyglow is observed to vary over four orders of magnitude, a range hundreds of times larger than was the case before artificial light. Nearly all of the study sites were polluted by artificial light. A non-linear relationship is observed between the sky brightness on clear and overcast nights, with a change in behavior near the rural to urban landuse transition. Overcast skies ranged from a third darker to almost 18 times brighter than clear. Clear sky radiances estimated by the World Atlas of Artificial Night Sky Brightness were found to be overestimated by ~25%; our dataset will play an important role in the calibration and ground truthing of future skyglow models. Most of the brightly lit sites darkened as the night progressed, typically by ~5% per hour. The great variation in skyglow radiance observed from site-to-site and with changing meteorological conditions underlines the need for a long-term international monitoring program.
Summaries of SpS17 Discussions IAU GA 2012 Special Session on Light Pollution
To address light pollution issues, IAU Commissions 41, 46, 50, and 55 are involved in getting the word out to the public and IAU members via cultural, educational, technical; however, efforts can always improve and evolve. To carry out a successful light pollution abatement program supported by the IAU, it takes a diversity of groups, professions, and disciplines with their collective knowledge and experience. In manifesting dark skies awareness effectively, we are stronger together than we are alone; therefore, combining efforts of Commissions 41, 46, 50 and 55 with organizations like the International Dark-Sky Association, Astronomers Without Borders, The World at Night and partnering with events like Earth Hour or GLOBE at Night is a good step forward.
Citizen Science Programs on Light Pollution Awareness: Where Do We Go with the Data?
Once data from a citizen-science program on light pollution is verified, what research projects, on-line analytical tools and tutorials should be developed, and what ways can results and acknowledgements be provided to the public? These and other questions are explored.