Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
402 result(s) for "Walker, Kimberly"
Sort by:
The Small Protein RmpD Drives Hypermucoviscosity in Klebsiella pneumoniae
Capsule is a critical virulence factor in Klebsiella pneumoniae , in both antibiotic-resistant classical strains and hypervirulent strains. Hypervirulent strains usually have a hypermucoviscosity (HMV) phenotype that contributes to their heightened virulence capacity, but the production of HMV is not understood. The transcriptional regulator RmpA is required for HMV and also activates capsule gene expression, leading to the assumption that HMV is caused by hyperproduction of capsule. We have identified a new gene ( rmpD ) required for HMV but not for capsule production. This distinction between HMV and capsule production will promote a better understanding of the mechanisms of hypervirulence, which is in great need given the alarming increase in clinical isolates with both drug resistance and hypervirulence traits. Klebsiella pneumoniae has a remarkable ability to cause a wide range of human diseases. It is divided into two broad classes: classical strains that are a notable problem in health care settings due to multidrug resistance, and hypervirulent (hv) strains that are historically drug sensitive but able to establish disease in immunocompetent hosts. Alarmingly, there has been an increased frequency of clinical isolates that have both drug resistance and hv-associated genes. One such gene, rmpA , encodes a transcriptional regulator required for maximal capsule ( cps ) gene expression and confers hypermucoviscosity (HMV). This link has resulted in the assumption that HMV is caused by elevated capsule production. However, we recently reported a new cps regulator, RmpC, and Δ rmpC mutants have reduced cps expression but retain HMV, suggesting that capsule production and HMV may be separable traits. Here, we report the identification of a small protein, RmpD, that is essential for HMV but does not impact capsule. RmpD is 58 residues with a putative N-terminal transmembrane domain and highly positively charged C-terminal half, and it is conserved among other hv K. pneumoniae strains. Expression of rmpD in trans complements both Δ rmpD and Δ rmpA mutants for HMV, suggesting that RmpD is the key driver of this phenotype. The rmpD gene is located between rmpA and rmpC , within an operon regulated by RmpA. These data, combined with our previous work, suggest a model in which the RmpA-associated phenotypes are largely due to RmpA activating the expression of rmpD to produce HMV and rmpC to stimulate cps expression. IMPORTANCE Capsule is a critical virulence factor in Klebsiella pneumoniae , in both antibiotic-resistant classical strains and hypervirulent strains. Hypervirulent strains usually have a hypermucoviscosity (HMV) phenotype that contributes to their heightened virulence capacity, but the production of HMV is not understood. The transcriptional regulator RmpA is required for HMV and also activates capsule gene expression, leading to the assumption that HMV is caused by hyperproduction of capsule. We have identified a new gene ( rmpD ) required for HMV but not for capsule production. This distinction between HMV and capsule production will promote a better understanding of the mechanisms of hypervirulence, which is in great need given the alarming increase in clinical isolates with both drug resistance and hypervirulence traits.
A Klebsiella pneumoniae Regulatory Mutant Has Reduced Capsule Expression but Retains Hypermucoviscosity
Klebsiella pneumoniae continues to be a substantial public health threat due to its ability to cause health care-associated and community-acquired infections combined with its ability to acquire antibiotic resistance. Novel therapeutics are needed to combat this pathogen, and a greater understanding of its virulence factors is required for the development of new drugs. A key virulence factor for K. pneumoniae is the capsule, and community-acquired hypervirulent strains produce a capsule that causes hypermucoidy. We report here a novel capsule regulator, RmpC, and provide evidence that capsule production and the hypermucoviscosity phenotype are distinct processes. Infection studies showing that this and other capsule regulator mutants have a range of phenotypes indicate that additional virulence factors are in their regulons. These results shed new light on the mechanisms controlling capsule production and introduce targets that may prove useful for the development of novel therapeutics for the treatment of this increasingly problematic pathogen. The polysaccharide capsule is an essential virulence factor for Klebsiella pneumoniae in both community-acquired hypervirulent strains as well as health care-associated classical strains that are posing significant challenges due to multidrug resistance. Capsule production is known to be transcriptionally regulated by a number of proteins, but very little is known about how these proteins collectively control capsule production. RmpA and RcsB are two known regulators of capsule gene expression, and RmpA is required for the hypermucoviscous (HMV) phenotype in hypervirulent K. pneumoniae strains. In this report, we confirmed that these regulators performed their anticipated functions in the ATCC 43816 derivative, KPPR1S: rcsB and rmpA mutants are HMV negative and have reduced capsule gene expression. We also identified a novel transcriptional regulator, RmpC, encoded by a gene near rmpA . The Δ rmpC strain has reduced capsule gene expression but retains the HMV phenotype. We further showed that a regulatory cascade exists in which KvrA and KvrB, the recently characterized MarR-like regulators, and RcsB contribute to capsule regulation through regulation of the rmpA promoter and through additional mechanisms. In a murine pneumonia model, the regulator mutants have a range of colonization defects, suggesting that they regulate virulence factors in addition to capsule. Further testing of the rmpC and rmpA mutants revealed that they have distinct and overlapping functions and provide evidence that HMV is not dependent on overproduction of capsule. This distinction will facilitate a better understanding of HMV and how it contributes to enhanced virulence of hypervirulent strains. IMPORTANCE Klebsiella pneumoniae continues to be a substantial public health threat due to its ability to cause health care-associated and community-acquired infections combined with its ability to acquire antibiotic resistance. Novel therapeutics are needed to combat this pathogen, and a greater understanding of its virulence factors is required for the development of new drugs. A key virulence factor for K. pneumoniae is the capsule, and community-acquired hypervirulent strains produce a capsule that causes hypermucoidy. We report here a novel capsule regulator, RmpC, and provide evidence that capsule production and the hypermucoviscosity phenotype are distinct processes. Infection studies showing that this and other capsule regulator mutants have a range of phenotypes indicate that additional virulence factors are in their regulons. These results shed new light on the mechanisms controlling capsule production and introduce targets that may prove useful for the development of novel therapeutics for the treatment of this increasingly problematic pathogen.
Hypermucoviscosity Regulator RmpD Interacts with Wzc and Controls Capsular Polysaccharide Chain Length
Infections caused by Klebsiella pneumoniae continue to be a global public health threat; the treatment of these infections is complicated by the high frequency of multidrug resistance. K. pneumoniae produces a polysaccharide capsule required for virulence. Hypervirulent isolates also have a hypermucoviscous (HMV) phenotype that increases virulence, and we recently demonstrated that a horizontally acquired gene, rmpD , is required for HMV and hypervirulence but that the identity of the polymeric product(s) in HMV isolates is uncertain. Klebsiella pneumoniae is a leading cause of nosocomial infections, including pneumonia, bacteremia, and urinary tract infections. Treatment options are increasingly restricted by the high prevalence of resistance to frontline antibiotics, including carbapenems, and the recently identified plasmid-conferred colistin resistance. The classical pathotype (cKp) is responsible for most of the nosocomial infections observed globally, and these isolates are often multidrug resistant. The hypervirulent pathotype (hvKp) is a primary pathogen capable of causing community-acquired infections in immunocompetent hosts. The hypermucoviscosity (HMV) phenotype is strongly associated with the increased virulence of hvKp isolates. Recent studies demonstrated that HMV requires capsule (CPS) synthesis and the small protein RmpD but is not dependent on the increased amount of capsule associated with hvKp. Here, we identified the structure of the capsular and extracellular polysaccharide isolated from hvKp strain KPPR1S (serotype K2) with and without RmpD. We found that the polymer repeat unit structure is the same in both strains and that it is identical to the K2 capsule. However, the chain length of CPS produced by strains expressing rmpD demonstrates more uniform length. This property was reconstituted in CPS from Escherichia coli isolates that possess the same CPS biosynthesis pathway as K. pneumoniae but naturally lack rmpD. Furthermore, we demonstrate that RmpD binds Wzc, a conserved capsule biosynthesis protein required for CPS polymerization and export. Based on these observations, we present a model for how the interaction of RmpD with Wzc could impact CPS chain length and HMV. IMPORTANCE Infections caused by Klebsiella pneumoniae continue to be a global public health threat; the treatment of these infections is complicated by the high frequency of multidrug resistance. K. pneumoniae produces a polysaccharide capsule required for virulence. Hypervirulent isolates also have a hypermucoviscous (HMV) phenotype that increases virulence, and we recently demonstrated that a horizontally acquired gene, rmpD , is required for HMV and hypervirulence but that the identity of the polymeric product(s) in HMV isolates is uncertain. Here, we demonstrate that RmpD regulates capsule chain length and interacts with Wzc, a part of the capsule polymerization and export machinery shared by many pathogens. We further show that RmpD confers HMV and regulates capsule chain length in a heterologous host ( E. coli ). As Wzc is a conserved protein found in many pathogens, it is possible that RmpD-mediated HMV and increased virulence may not be restricted to K. pneumoniae .
The role of the media on maternal confidence in provider HPV recommendation
Background Despite a growing understanding of the importance of provider HPV recommendation on parental acceptance, U.S. HPV vaccination rates remain suboptimal. Given the prevalence and use of the media for health decisions, this study examined the relationship between the media and provider HPV recommendation on maternal HPV vaccine hesitancy. Methods Thirty individual interviews with HPV vaccine-accepting mothers in the Midwest U.S. were conducted to examine their feelings of hesitancy around the decision to accept HPV vaccination at the time of provider recommendation and their suggestions for improving the recommendation experience by addressing media concerns. Results Media exposure was an antecedent to hesitancy for three main vaccination concerns: safety, protection/efficacy and sexual stigma. Although mothers accepted vaccination, they continued to feel confused and hesitant about HPV vaccination. They had several recommendations for how providers could combat hesitancy to improve confidence in HPV vaccine acceptance. Conclusions Providers’ approach to HPV vaccination recommendation must consider concerns reported in the media with delivery techniques modified to adjust to maternal fears absorbed from adverse media information.
Identification of Two Regulators of Virulence That Are Conserved in Klebsiella pneumoniae Classical and Hypervirulent Strains
Klebsiella pneumoniae is widely recognized as a pathogen with a propensity for acquiring antibiotic resistance. It is capable of causing a range of hospital-acquired infections (urinary tract infections [UTI], pneumonia, sepsis) and community-acquired invasive infections. The genetic heterogeneity of K. pneumoniae isolates complicates our ability to understand the virulence of K. pneumoniae . Characterization of virulence factors conserved between strains as well as strain-specific factors will improve our understanding of this important pathogen. The MarR family of regulatory proteins is widely distributed in bacteria and regulates cellular processes such as antibiotic resistance and the expression of virulence factors. Klebsiella encodes numerous MarR-like proteins, and they likely contribute to the ability of K. pneumoniae to respond to and survive under a wide variety of environmental conditions, including those present in the human body. We tested loss-of-function mutations in all the marR homologues in a murine pneumonia model and found that two ( kvrA and kvrB ) significantly impacted the virulence of K1 and K2 capsule type hypervirulent ( hv ) strains and that kvrA affected the virulence of a sequence type 258 (ST258) classical strain. In the hv strains, kvrA and kvrB mutants displayed phenotypes associated with reduced capsule production, mucoviscosity, and transcription from galF and manC promoters that drive expression of capsule synthesis genes. In contrast, kvrA and kvrB mutants in the ST258 strain had no effect on capsule gene expression or capsule-related phenotypes. Thus, KvrA and KvrB affect virulence in classical and hv strains but the effect on virulence may not be exclusively due to effects on capsule production. IMPORTANCE In addition to having a reputation as the causative agent for hospital-acquired infections as well as community-acquired invasive infections, Klebsiella pneumoniae has gained widespread attention as a pathogen with a propensity for acquiring antibiotic resistance. Due to the rapid emergence of carbapenem resistance among K. pneumoniae strains, a better understanding of virulence mechanisms and identification of new potential drug targets are needed. This study identified two novel regulators (KvrA and KvrB) of virulence in K. pneumoniae and demonstrated that their effect on virulence in invasive strains is likely due in part to effects on capsule production (a major virulence determinant) and hypermucoviscosity. KvrA also impacts the virulence of classical strains but does not appear to affect capsule gene expression in this strain. KvrA and KvrB are conserved among K. pneumoniae strains and thus could regulate capsule expression and virulence in diverse strains regardless of capsule type. In addition to having a reputation as the causative agent for hospital-acquired infections as well as community-acquired invasive infections, Klebsiella pneumoniae has gained widespread attention as a pathogen with a propensity for acquiring antibiotic resistance. Due to the rapid emergence of carbapenem resistance among K. pneumoniae strains, a better understanding of virulence mechanisms and identification of new potential drug targets are needed. This study identified two novel regulators (KvrA and KvrB) of virulence in K. pneumoniae and demonstrated that their effect on virulence in invasive strains is likely due in part to effects on capsule production (a major virulence determinant) and hypermucoviscosity. KvrA also impacts the virulence of classical strains but does not appear to affect capsule gene expression in this strain. KvrA and KvrB are conserved among K. pneumoniae strains and thus could regulate capsule expression and virulence in diverse strains regardless of capsule type.
Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms
Cancer-induced immune responses affect tumour progression and therapeutic response. In multiple murine models and clinical datasets, we identified large variations of neutrophils and macrophages that define ‘immune subtypes’ of triple-negative breast cancer (TNBC), including neutrophil-enriched (NES) and macrophage-enriched subtypes (MES). Different tumour-intrinsic pathways and mutual regulation between macrophages (or monocytes) and neutrophils contribute to the development of a dichotomous myeloid compartment. MES contains predominantly macrophages that are CCR2-dependent and exhibit variable responses to immune checkpoint blockade (ICB). NES exhibits systemic and local accumulation of immunosuppressive neutrophils (or granulocytic myeloid-derived suppressor cells), is resistant to ICB, and contains a minority of macrophages that seem to be unaffected by CCR2 knockout. A MES-to-NES conversion mediated acquired ICB resistance of initially sensitive MES models. Our results demonstrate diverse myeloid cell frequencies, functionality and potential roles in immunotherapies, and highlight the need to better understand the inter-patient heterogeneity of the myeloid compartment. Kim et al. demonstrate neutrophil- and macrophage-enriched subtypes in triple-negative breast cancer and how these immune profiles affect therapeutic responses to immune checkpoint blockade.
Genomic and functional analysis of rmp locus variants in Klebsiella pneumoniae
Background Klebsiella pneumoniae is an opportunistic pathogen and a leading cause of healthcare-associated infections in hospitals, which are frequently antimicrobial resistant (AMR). Exacerbating the public health threat posed by K. pneumoniae , some strains also harbour additional hypervirulence determinants typically acquired via mobile genetic elements such as the well-characterised large virulence plasmid KpVP-1. The rmpADC locus is considered a key virulence feature of K. pneumoniae and is associated with upregulated capsule expression and the hypermucoid phenotype, which can enhance virulence by contributing to serum resistance. Typically such strains have been susceptible to all antimicrobials besides ampicillin; however, the recent emergence of AMR hypermucoid strains is concerning. Methods Here, we investigate the genetic diversity, evolution, mobilisation and prevalence of rmpADC , in a dataset of 14,000 genomes from isolates of the Klebsiella pneumoniae species complex, and describe the RmST virulence typing scheme for tracking rmpADC variants for the purposes of genomic surveillance. Additionally, we examine the functionality of representatives for variants of rmpADC introduced into a mutant strain lacking its native rmpADC locus. Results The rmpADC locus was detected in 7% of the dataset, mostly from genomes of K. pneumoniae and a very small number of K. variicola and K. quasipneumoniae . Sequence variants of rmpADC grouped into five distinct lineages ( rmp1 , rmp2 , rmp2A , rmp3 and rmp4 ) that corresponded to unique mobile elements, and were differentially distributed across different populations (i.e. clonal groups) of K. pneumoniae . All variants were demonstrated to produce enhanced capsule production and hypermucoviscosity. Conclusions These results provide an overview of the diversity and evolution of a prominent K. pneumoniae virulence factor and support the idea that screening for rmpADC in K. pneumoniae isolates and genomes is valuable to monitor the emergence and spread of hypermucoid K. pneumoniae , including AMR strains.
Klebsiella pneumoniae employs a type VI secretion system to overcome microbiota-mediated colonization resistance
Microbial species must compete for space and nutrients to persist in the gastrointestinal (GI) tract, and our understanding of the complex pathobiont-microbiota interactions is far from complete. Klebsiella pneumoniae , a problematic, often drug-resistant nosocomial pathogen, can colonize the GI tract asymptomatically, serving as an infection reservoir. To provide insight on how K. pneumoniae interacts with the resident gut microbiome, we conduct a transposon mutagenesis screen using a murine model of GI colonization with an intact microbiota. Among the genes identified were those encoding a type VI secretion system (T6SS), which mediates contact-dependent killing of gram-negative bacteria. From several approaches, we demonstrate that the T6SS is critical for K. pneumoniae gut colonization. Metagenomics and in vitro killing assays reveal that K. pneumoniae reduces Betaproteobacteria species in a T6SS-dependent manner, thus identifying specific species targeted by K. pneumoniae . We further show that T6SS gene expression is controlled by several transcriptional regulators and that expression only occurs in vitro under conditions that mimic the gut environment. By enabling K. pneumoniae to thrive in the gut, the T6SS indirectly contributes to the pathogenic potential of this organism. These observations advance our molecular understanding of how K. pneumoniae successfully colonizes the GI tract. Through metagenomics, Bray et al. identified Klebsiella pneumoniae interacting microbiota partners in the gut, and a transposon mutagenesis screen revealed a role for its T6SS in gut colonization, with t6ss transcription only occurring in vitro under GI-mimetic conditions.
Colistin resistance mutations in phoQ can sensitize Klebsiella pneumoniae to IgM-mediated complement killing
Due to multi-drug resistance, physicians increasingly use the last-resort antibiotic colistin to treat infections with the Gram-negative bacterium Klebsiella pneumoniae. Unfortunately, K. pneumoniae can also develop colistin resistance. Interestingly, colistin resistance has dual effects on bacterial clearance by the immune system. While it increases resistance to antimicrobial peptides, colistin resistance has been reported to sensitize certain bacteria for killing by human serum. Here we investigate the mechanisms underlying this increased serum sensitivity, focusing on human complement which kills Gram-negatives via membrane attack complex (MAC) pores. Using in vitro evolved colistin resistant strains and a fluorescent MAC-mediated permeabilization assay, we showed that two of the three tested colistin resistant strains, Kp209_CSTR and Kp257_CSTR, were sensitized to MAC. Transcriptomic and mechanistic analyses focusing on Kp209_CSTR revealed that a mutation in the phoQ gene locked PhoQ in an active state, making Kp209_CSTR colistin resistant and MAC sensitive. Detailed immunological assays showed that complement activation on Kp209_CSTR in human serum required specific IgM antibodies that bound Kp209_CSTR but did not recognize the wild-type strain. Together, our results show that developing colistin resistance affected recognition of Kp209_CSTR and its killing by the immune system.
The stroke transitional care intervention for older adults with stroke and multimorbidity: a multisite pragmatic randomized controlled trial
Background This study aimed to test, in real-world clinical practice, the effectiveness of a Transitional Care Stroke Intervention (TCSI) compared to usual care on health outcomes, self-management, patient experience, and health and social service use costs in older adults (≥ 55 years) with stroke and multimorbidity (≥ 2 chronic conditions). Methods This pragmatic randomized controlled trial (RCT) included older adults discharged from hospital to community with stroke and multimorbidity using outpatient stroke rehabilitation services in two communities in Ontario, Canada. Participants were randomized 1:1 to usual care (control group) or usual care plus the 6-month TCSI (intervention group). The TCSI was delivered virtually by an interprofessional (IP) team, and included care coordination/system navigation support, phone/video visits, monthly IP team conferences, and an online resource to support system navigation. The primary outcome was risk of hospital readmission (all cause) after six-months. Secondary outcomes included physical and mental functioning, stroke self-management, patient experience, and health and social service use costs. The intention-to-treat principle was used to conduct the primary and secondary analyses. Results Ninety participants were enrolled (44 intervention, 46 control); 11 (12%) participants were lost to follow-up, leaving 79 (39 intervention, 40 control). No significant between-group differences were seen for baseline to six-month risk of hospital readmission. Differences favouring the intervention group were seen in the following secondary outcomes: physical functioning (SF-12 PCS mean difference: 5.10; 95% CI: 1.58–8.62, p  = 0.005), stroke self-management (Southampton Stroke Self-Management Questionnaire mean difference: 6.00; 95% CI: 0.51—11.50, p  = 0.03), and patient experience (Person-Centred Coordinated Care Experiences Questionnaire mean difference: 2.64, 95% CI: 0.81, 4.47, p  = 0.005). No between-group differences were found in total healthcare costs or other secondary outcomes. Conclusions Although participation in the TCSI did not impact hospital readmissions, there were improvements in physical functioning, stroke self-management and patient experience in older adults with stroke and multimorbidity without increasing total healthcare costs. Challenges associated with the COVID-19 pandemic, including the shift from in-person to virtual delivery, and re-deployment of interventionists could have influenced the results. A larger pragmatic RCT is needed to determine intervention effectiveness in diverse geographic settings and ethno-cultural populations and examine intervention scalability. Trial registration ClinicalTrials.gov Identifier: NCT04278794 . Registered May 2, 2020.