Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,147 result(s) for "Walker, Scott S."
Sort by:
A small-molecule inhibitor of BamA impervious to efflux and the outer membrane permeability barrier
The development of new antimicrobial drugs is a priority to combat the increasing spread of multidrug-resistant bacteria. This development is especially problematic in gram-negative bacteria due to the outer membrane (OM) permeability barrier and multidrug efflux pumps. Therefore, we screened for compounds that target essential, nonredundant, surface-exposed processes in gram-negative bacteria. We identified a compound, MRL-494, that inhibits assembly of OM proteins (OMPs) by the β-barrel assembly machine (BAM complex). The BAM complex contains one essential surface-exposed protein, BamA. We constructed a bamA mutagenesis library, screened for resistance to MRL-494, and identified the mutation bamAE470K . BamAE470K restores OMP biogenesis in the presence of MRL-494. The mutant protein has both altered conformation and activity, suggesting it could either inhibit MRL-494 binding or allow BamA to function in the presence of MRL-494. By cellular thermal shift assay (CETSA), we determined that MRL-494 stabilizes BamA and BamAE470K from thermally induced aggregation, indicating direct or proximal binding to both BamA and BamAE470K. Thus, it is the altered activity of BamAE470K responsible for resistance to MRL-494. Strikingly, MRL-494 possesses a second mechanism of action that kills gram-positive organisms. In microbes lacking an OM, MRL-494 lethally disrupts the cytoplasmic membrane. We suggest that the compound cannot disrupt the cytoplasmic membrane of gram-negative bacteria because it cannot penetrate the OM. Instead, MRL-494 inhibits OMP biogenesis from outside the OM by targeting BamA. The identification of a small molecule that inhibits OMP biogenesis at the cell surface represents a distinct class of antibacterial agents.
Antibacterial macrocyclic peptides reveal a distinct mode of BamA inhibition
Outer membrane proteins (OMPs) produced by Gram-negative bacteria contain a cylindrical amphipathic β-sheet (“β-barrel”) that functions as a membrane spanning domain. The assembly (folding and membrane insertion) of OMPs is mediated by the heterooligomeric β- b arrel a ssembly m achine (BAM). The central BAM subunit (BamA) is an attractive antibacterial target because its structure and cell surface localization are conserved, it catalyzes an essential reaction, and potent bactericidal compounds that inhibit its activity have been described. Here we utilize mRNA display to discover cyclic peptides that bind to Escherichia coli BamA with high affinity. We describe three peptides that arrest the growth of BAM deficient E. coli strains, inhibit OMP assembly in live cells and in vitro, and bind to unique sites within the BamA β-barrel lumen. Remarkably, we find that if the peptides are added to cultures after a slowly assembling OMP mutant binds to BamA, they accelerate its biogenesis. The data strongly suggest that the peptides trap BamA in conformations that block the initiation of OMP assembly but favor a later assembly step. Molecular dynamics simulations provide further evidence that the peptides bind stably to BamA and function by a previously undescribed mechanism. Here the authors use mRNA display to discover peptide inhibitors of BamA, an essential factor that catalyzes the membrane insertion of bacterial outer membrane proteins. They show that three peptides are antibacterial and inhibit BamA activity by a unique mechanism.
Antibacterial small molecules targeting the conserved TOPRIM domain of DNA gyrase
To combat the threat of antibiotic-resistant Gram-negative bacteria, novel agents that circumvent established resistance mechanisms are urgently needed. Our approach was to focus first on identifying bioactive small molecules followed by chemical lead prioritization and target identification. Within this annotated library of bioactives, we identified a small molecule with activity against efflux-deficient Escherichia coli and other sensitized Gram-negatives. Further studies suggested that this compound inhibited DNA replication and selection for resistance identified mutations in a subunit of E. coli DNA gyrase, a type II topoisomerase. Our initial compound demonstrated weak inhibition of DNA gyrase activity while optimized compounds demonstrated significantly improved inhibition of E. coli and Pseudomonas aeruginosa DNA gyrase and caused cleaved complex stabilization, a hallmark of certain bactericidal DNA gyrase inhibitors. Amino acid substitutions conferring resistance to this new class of DNA gyrase inhibitors reside exclusively in the TOPRIM domain of GyrB and are not associated with resistance to the fluoroquinolones, suggesting a novel binding site for a gyrase inhibitor.
Substrate specificity of the TIM22 mitochondrial import pathway revealed with small molecule inhibitor of protein translocation
The TIM22 protein import pathway mediates the import of membrane proteins into the mitochondrial inner membrane and consists of two intermembrane space chaperone complexes, the Tim9-Tim10 and Tim8-Tim13 complexes. To facilitate mechanistic studies, we developed a chemical-genetic approach to identify small molecule agonists that caused lethality to a tim10-1 yeast mutant at the permissive temperature. One molecule, MitoBloCK-1, attenuated the import of the carrier proteins including the ADP/ATP and phosphate carriers, but not proteins that used the TIM23 or the Mia40/Erv1 translocation pathways. MitoBloCK-1 impeded binding of the Tim9-Tim10 complex to the substrate during an early stage of translocation, when the substrate was crossing the outer membrane. As a probe to determine the substrate specificity of the small Tim proteins, MitoBloCK-1 impaired the import of Tim22 and Tafazzin, but not Tim23, indicating that the Tim9-Tim10 complex mediates the import of a subset of inner membrane proteins. MitoBloCK-1 also inhibited growth of mammalian cells and import of the ADP/ATP carrier, but not TIM23 substrates, confirming that MitoBloCK-1 can be used to understand mammalian mitochondrial import and dysfunction linked to inherited human disease. Our approach of screening chemical libraries for compounds causing synthetic genetic lethality to identify inhibitors of mitochondrial protein translocation in yeast validates the generation of new probes to facilitate mechanistic studies in yeast and mammalian mitochondria.
Selective small-molecule inhibition of an RNA structural element
Riboswitches are non-coding RNA structures located in messenger RNAs that bind endogenous ligands, such as a specific metabolite or ion, to regulate gene expression. As such, riboswitches serve as a novel, yet largely unexploited, class of emerging drug targets. Demonstrating this potential, however, has proven difficult and is restricted to structurally similar antimetabolites and semi-synthetic analogues of their cognate ligand, thus greatly restricting the chemical space and selectivity sought for such inhibitors. Here we report the discovery and characterization of ribocil, a highly selective chemical modulator of bacterial riboflavin riboswitches, which was identified in a phenotypic screen and acts as a structurally distinct synthetic mimic of the natural ligand, flavin mononucleotide, to repress riboswitch-mediated ribB gene expression and inhibit bacterial cell growth. Our findings indicate that non-coding RNA structural elements may be more broadly targeted by synthetic small molecules than previously expected. A novel drug, ribocil, is shown to mimic the binding of a natural ligand to a bacterial riboflavin riboswitch (a non-coding stretch of messenger RNA whose structure is affected by a ligand—usually one related to the function of the protein encoded by the messenger RNA) to cause inhibition of bacterial growth; the ability to target an RNA structural element with a synthetic small molecule may expand our view of the target space susceptible to therapeutic intervention. New antibiotic trips an RNA switch The urgent need for new antibiotics is well recognized. Terry Roemer and colleagues at Merck now describe a new synthetic antibiotic, directed against a bacterial riboswitch. Riboswitches are stretches of non-coding RNA whose structure is affected by a ligand — usually one related to the function of the protein encoded by the riboswitch-containing gene. The new drug, ribocil, blocks the flavin mononucleotide riboswitch-mediated expression of the ribB gene required for riboflavin biosynthesis. Ribocil inhibits bacterial cell growth and is effective in treating a bacterial infection in a mouse model.
Cerastecins inhibit membrane lipooligosaccharide transport in drug-resistant Acinetobacter baumannii
Carbapenem-resistant Acinetobacter baumannii infections have limited treatment options. Synthesis, transport and placement of lipopolysaccharide or lipooligosaccharide (LOS) in the outer membrane of Gram-negative bacteria are important for bacterial virulence and survival. Here we describe the cerastecins, inhibitors of the A. baumannii transporter MsbA, an LOS flippase. These molecules are potent and bactericidal against A. baumannii , including clinical carbapenem-resistant Acinetobacter baumannii isolates. Using cryo-electron microscopy and biochemical analysis, we show that the cerastecins adopt a serpentine configuration in the central vault of the MsbA dimer, stalling the enzyme and uncoupling ATP hydrolysis from substrate flipping. A derivative with optimized potency and pharmacokinetic properties showed efficacy in murine models of bloodstream or pulmonary A. baumannii infection. While resistance development is inevitable, targeting a clinically unexploited mechanism avoids existing antibiotic resistance mechanisms. Although clinical validation of LOS transport remains undetermined, the cerastecins may open a path to narrow-spectrum treatment modalities for important nosocomial infections. Antibiotics to treat carbapenem-resistant Acinetobacter baumannii infection are an urgent need. The cerastecins are potent, bactericidal and efficacious in animal models of infection, and may enable new treatment modalities targeting LOS transport.
Inhibitor of intramembrane protease RseP blocks the σE response causing lethal accumulation of unfolded outer membrane proteins
The outer membrane (OM) of Gram-negative bacteria forms a robust permeability barrier that blocks entry of toxins and antibiotics. Most OM proteins (OMPs) assume a β-barrel fold, and some form aqueous channels for nutrient uptake and efflux of intracellular toxins. The Bam machine catalyzes rapid folding and assembly of OMPs. Fidelity of OMP biogenesis ismonitored by the σE stress response. When OMP folding defects arise, the proteases DegS and RseP act sequentially to liberate σE into the cytosol, enabling it to activate transcription of the stress regulon. Here, we identify batimastat as a selective inhibitor of RseP that causes a lethal decrease in σE activity in Escherichia coli, and we further identify RseP mutants that are insensitive to inhibition and confer resistance. Remarkably, batimastat treatment allows the capture of elusive intermediates in the OMP biogenesis pathway and offers opportunities to better understand the underlying basis for σE essentiality.
Genomics Strategies for Antifungal Drug Discovery - From Gene Discovery to Compound Screening
The use of genomics tools to discover new genes, to decipher pathways or to assign a function to a gene is just beginning to have an impact. Genomics approaches have been applied to both antibacterial and antifungal target discovery in order to identify a new generation of antibiotics. This review discusses genomics approaches for antifungal drug discovery, focusing on the areas of gene discovery, target validation, and compound screening. A variety of methods to identify fungal genes of interest are discussed, as well as methods for obtaining full-length sequences of these genes. One approach is well-suited to organisms having few introns (Candida albicans), and another for organisms with many introns (Aspergillus fumigatus). To validate broad spectrum fungal targets, the yeast Saccharomyces cerevisiae was used as a model system to rapidly identify genes essential for growth and viability of the organism. Validated targets were then exploited for high-throughput compound screening.
Inhibitor of intramembrane protease RseP blocks the sE response causing lethal accumulation of unfolded outer membrane proteins
The outer membrane (OM) of Gram-negative bacteria forms a robust permeability barrier that blocks entry of toxins and antibiotics. Most OM proteins (OMPs) assume a β-barrel fold, and some form aqueous channels for nutrient uptake and efflux of intracellular toxins. The Bam machine catalyzes rapid folding and assembly of OMPs. Fidelity of OMP biogenesis is monitored by the σE stress response. When OMP folding defects arise, the proteases DegS and RseP act sequentially to liberate σE into the cytosol, enabling it to activate transcription of the stress regulon. Here, we identify batimastat as a selective inhibitor of RseP that causes a lethal decrease in σE activity in Escherichia coli, and we further identify RseP mutants that are insensitive to inhibition and confer resistance. Remarkably, batimastat treatment allows the capture of elusive intermediates in the OMP biogenesis pathway and offers opportunities to better understand the underlying basis for σE essentiality.