Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
484 result(s) for "Wallis, Robert"
Sort by:
Host-directed immunotherapy of viral and bacterial infections: past, present and future
The advent of COVID-19 and the persistent threat of infectious diseases such as tuberculosis, malaria, influenza and HIV/AIDS remind us of the marked impact that infections continue to have on public health. Some of the most effective protective measures are vaccines but these have been difficult to develop for some of these infectious diseases even after decades of research. The development of drugs and immunotherapies acting directly against the pathogen can be equally challenging, and such pathogen-directed therapeutics have the potential disadvantage of selecting for resistance. An alternative approach is provided by host-directed therapies, which interfere with host cellular processes required for pathogen survival or replication, or target the host immune response to infection (immunotherapies) to either augment immunity or ameliorate immunopathology. Here, we provide a historical perspective of host-directed immunotherapeutic interventions for viral and bacterial infections and then focus on SARS-CoV-2 and Mycobacterium tuberculosis, two major human pathogens of the current era, to indicate the key lessons learned and discuss candidate immunotherapeutic approaches, with a focus on drugs currently in clinical trials.In this Perspective, the authors reflect on the historical development of host-directed immunotherapeutic interventions for viral and bacterial infections, and then focus on how historical insights can be applied to current approaches to therapy of SARS-CoV-2 and Mycobacterium tuberculosis infections.
Advancing host-directed therapy for tuberculosis
Improved treatments are needed for nearly all forms of Mycobacterium tuberculosis infection. Adjunctive agents that target the host have the potential to shorten treatment duration, prevent resistance and reduce lung injury by promoting macrophage effector mechanisms and blocking mechanisms that cause lung destruction. Improved treatments are needed for nearly all forms of Mycobacterium tuberculosis infection. Adjunctive host-directed therapies have the potential to shorten tuberculosis treatment duration, prevent resistance and reduce lung injury by promoting autophagy, antimicrobial peptide production and other macrophage effector mechanisms, as well as by modifying specific mechanisms that cause lung inflammation and matrix destruction. The range of candidates is broad, including several agents approved for other clinical indications that are ready for evaluation in Phase II clinical trials. The promise of new and existing host-directed therapies that could accelerate response and improve tuberculosis treatment outcomes is discussed in this Opinion article.
Host-directed therapies for infectious diseases: current status, recent progress, and future prospects
Despite extensive global efforts in the fight against killer infectious diseases, they still cause one in four deaths worldwide and are important causes of long-term functional disability arising from tissue damage. The continuing epidemics of tuberculosis, HIV, malaria, and influenza, and the emergence of novel zoonotic pathogens represent major clinical management challenges worldwide. Newer approaches to improving treatment outcomes are needed to reduce the high morbidity and mortality caused by infectious diseases. Recent insights into pathogen–host interactions, pathogenesis, inflammatory pathways, and the host's innate and acquired immune responses are leading to identification and development of a wide range of host-directed therapies with different mechanisms of action. Host-directed therapeutic strategies are now becoming viable adjuncts to standard antimicrobial treatment. Host-directed therapies include commonly used drugs for non-communicable diseases with good safety profiles, immunomodulatory agents, biologics (eg monoclonal antibodies), nutritional products, and cellular therapy using the patient's own immune or bone marrow mesenchymal stromal cells. We discuss clinically relevant examples of progress in identifying host-directed therapies as adjunct treatment options for bacterial, viral, and parasitic infectious diseases.
Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection
Mycobacterium tuberculosis is a leading cause of mortality worldwide and establishes a long-lived latent infection in a substantial proportion of the human population. Multiple lines of evidence suggest that some individuals are resistant to latent M. tuberculosis infection despite long-term and intense exposure, and we term these individuals ‘resisters’. In this Review, we discuss the epidemiological and genetic data that support the existence of resisters and propose criteria to optimally define and characterize the resister phenotype. We review recent insights into the immune mechanisms of M. tuberculosis clearance, including responses mediated by macrophages, T cells and B cells. Understanding the cellular mechanisms that underlie resistance to M. tuberculosis infection may reveal immune correlates of protection that could be utilized for improved diagnostics, vaccine development and novel host-directed therapeutic strategies.
Tuberculosis—advances in development of new drugs, treatment regimens, host-directed therapies, and biomarkers
Tuberculosis is the leading infectious cause of death worldwide, with 9·6 million cases and 1·5 million deaths reported in 2014. WHO estimates 480 000 cases of these were multidrug resistant (MDR). Less than half of patients who entered into treatment for MDR tuberculosis successfully completed that treatment, mainly due to high mortality and loss to follow-up. These in turn illustrate weaknesses in current treatment regimens and national tuberculosis programmes, coupled with operational treatment challenges. In this Review we provide an update on recent developments in the tuberculosis drug-development pipeline (including new and repurposed antimicrobials and host-directed drugs) as they are applied to new regimens to shorten and improve outcomes of tuberculosis treatment. Several new or repurposed antimicrobial drugs are in advanced trial stages for MDR tuberculosis, and two new antimicrobial drug candidates are in early-stage trials. Several trials to reduce the duration of therapy in MDR and drug-susceptible tuberculosis are ongoing. A wide range of candidate host-directed therapies are being developed to accelerate eradication of infection, prevent new drug resistance, and prevent permanent lung injury. As these drugs have been approved for other clinical indications, they are now ready for repurposing for tuberculosis in phase 2 clinical trials. We assess risks associated with evaluation of new treatment regimens, and highlight opportunities to advance tuberculosis research generally through regulatory innovation in MDR tuberculosis. Progress in tuberculosis-specific biomarkers (including culture conversion, PET and CT imaging, and gene expression profiles) can support this innovation. Several global initiatives now provide unique opportunities to tackle the tuberculosis epidemic through collaborative partnerships between high-income countries and middle-income and low-income countries for clinical trials training and research, allowing funders to coordinate several national and regional programmes for greatest overall effect.
Tuberculosis biomarkers discovery: developments, needs, and challenges
Biomarkers are indispensable to the development of new tuberculosis therapeutics and vaccines. The most robust biomarkers measure factors that are essential to the underlying pathological process of the disease being treated, and thus can capture the full effects of many types of interventions on clinical outcomes in multiple prospective, randomised clinical trials. Many Mycobacterium tuberculosis and human biomarkers have been studied over the past decade. Present research focuses on three areas: biomarkers predicting treatment efficacy and cure of active tuberculosis, the reactivation of latent tuberculosis infection, and the induction of protective immune responses by vaccination. Many older, non-specific markers of inflammation, when considered in isolation, do not have sufficient predictive values for clinical use in tuberculosis. Although no new accurate, tuberculosis-specific biomarkers have yet been discovered, substantial progress has been made in some areas. However, the qualification of biomarkers as a surrogate for a clinical endpoint in tuberculosis is very challenging, and, for biomarkers that are non-culture-based, impossible to pursue without the availability of well characterised biobanks containing biospecimens from patients who have had adequate follow-up to establish long-term treatment outcome. We review progress in tuberculosis biomarker development and efforts being made to harness resources to meet future challenges.
Tumour necrosis factor antagonists: structure, function, and tuberculosis risks
Our understanding of the infection risks presented by tumour necrosis factor (TNF) antagonists has continued to evolve in the 10 years since these drugs were first introduced. Several recent studies have confirmed the increased risk of tuberculosis posed by TNF antibodies compared with soluble TNF receptor, particularly with regard to reactivation of latent infection. Structural and functional differences seem to account for this finding. This Review examines the potential relations between target specificity, stoichiometry, and binding kinetics of TNF blockers and their associated risk of infection. Clinical strategies for prevention and management of tuberculosis in patients treated with TNF blockers may be improved based on our evolving understanding of these differences.
Month 2 Culture Status and Treatment Duration as Predictors of Recurrence in Pulmonary Tuberculosis: Model Validation and Update
New regimens capable of shortening tuberculosis treatment without increasing the risk of recurrence are urgently needed. A 2013 meta-regression analysis, using data from trials published from 1973 to 1997 involving 7793 patients, identified 2-month sputum culture status and treatment duration as independent predictors of recurrence. The resulting model predicted that if a new 4-month regimen reduced the proportion of patients positive at month 2 to 1%, it would reduce to 10% the risk of a relapse rate >10% in a trial with 680 subjects per arm. The 1% target was far lower than anticipated. Data from the 8 arms of 3 recent unsuccessful phase 3 treatment-shortening trials of fluoroquinolone-substituted regimens (REMox, OFLOTUB, and RIFAQUIN) were used to assess and refine the accuracy of the 2013 meta-regression model. The updated model was then tested using data from a treatment shortening trial reported in 2009 by Johnson et al. The proportions of patients with recurrence as predicted by the 2013 model were highly correlated with observed proportions as reported in the literature (R2 = 0.86). Using the previously proposed threshold of 10% recurrences as the maximum likely considered acceptable by tuberculosis control programs, the original model correctly identified all 4 six-month regimens as satisfactory, and 3 of 4 four-month regimens as unsatisfactory (sensitivity = 100%, specificity = 75%, PPV = 80%, and NPV = 100%). A revision of the regression model based on the full dataset of 66 regimens and 11181 patients resulted in only minimal changes to its predictions. A test of the revised model using data from the treatment shortening trial of Johnson et al found the reported relapse rates in both arms to be consistent with predictions. Meta-regression modeling of recurrence based on month 2 culture status and regimen duration can inform the design of future phase 3 tuberculosis clinical trials.
Mycobactericidal Activity of Sutezolid (PNU-100480) in Sputum (EBA) and Blood (WBA) of Patients with Pulmonary Tuberculosis
Sutezolid (PNU-100480) is a linezolid analog with superior bactericidal activity against Mycobacterium tuberculosis in the hollow fiber, whole blood and mouse models. Like linezolid, it is unaffected by mutations conferring resistance to standard TB drugs. This study of sutezolid is its first in tuberculosis patients. Sputum smear positive tuberculosis patients were randomly assigned to sutezolid 600 mg BID (N = 25) or 1200 mg QD (N = 25), or standard 4-drug therapy (N = 9) for the first 14 days of treatment. Effects on mycobacterial burden in sputum (early bactericidal activity or EBA) were monitored as colony counts on agar and time to positivity in automated liquid culture. Bactericidal activity was also measured in ex vivo whole blood cultures (whole blood bactericidal activity or WBA) inoculated with M. tuberculosis H37Rv. All patients completed assigned treatments and began subsequent standard TB treatment according to protocol. The 90% confidence intervals (CI) for bactericidal activity in sputum over the 14 day interval excluded zero for all treatments and both monitoring methods, as did those for cumulative WBA. There were no treatment-related serious adverse events, premature discontinuations, or dose reductions due to laboratory abnormalities. There was no effect on the QT interval. Seven sutezolid-treated patients (14%) had transient, asymptomatic ALT elevations to 173±34 U/L on day 14 that subsequently normalized promptly; none met Hy's criteria for serious liver injury. The mycobactericidal activity of sutezolid 600 mg BID or 1200 mg QD was readily detected in sputum and blood. Both schedules were generally safe and well tolerated. Further studies of sutezolid in tuberculosis treatment are warranted. ClinicalTrials.gov NCT01225640.
Shamans/Neo-Shamans
In popular culture, such diverse characters as occultist Aleister Crowley, Doors musician Jim Morrison, and performance artist Joseph Beuys have been called shamans. In anthropology, on the other hand, shamanism has associations with sorcery, witchcraft and healing, and archaeologists have suggested the meaning of prehistoric cave art lies with shamans and altered consciousness. Robert J. Wallis explores the interface between 'new' and prehistoric shamans. The book draws on interviews with a variety of practitioners, particularly contemporary pagans in Britain and north America. Wallis looks at historical and archaeological sources to explore contemporary pagan engagements with prehistoric sacred sites such as Stonehenge and Avebury, and discusses the controversial use by neo-Shamans of indigenous (particularly native American) shamanism. List of illustrations Preface Acknowledgements Introduction A Native at Home: Producing Ethnographic Fragments of Neo-Shamanisms 1. 'White-Shamans': Sources for Neo-Shamans 2. Plastic Medicine Men? Appraising the 'Great Pretenders' 3. Taliesin's Trip, Wyrd Woden: Druid and Heathen Neo-Shamans 4. 'Celtic' and 'Northern' Shamanisms? Contesting the Past 5. 'Sacred' Sites? Neo-Shamans and Prehistoric Heritage 6. Waking Neolithic Ancestors: Further Controversies and 'Reburial' 7. Invading Anthros, Thieving Archos, Wannabe Indians: Academics, Neo-Shamans and Indigenous Communities Conclusion: Neo-Shamans in Post-modernity Appendix Resolution of the 5th Annual Meeting of the Tradition Elders Circle & AIM Resolution References Index