Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
93
result(s) for
"Wallraff, Andreas"
Sort by:
Realizing repeated quantum error correction in a distance-three surface code
by
Müller, Markus
,
Eichler, Christopher
,
Andersen, Christian Kraglund
in
142/126
,
639/766/483/2802
,
639/766/483/481
2022
Quantum computers hold the promise of solving computational problems that are intractable using conventional methods
1
. For fault-tolerant operation, quantum computers must correct errors occurring owing to unavoidable decoherence and limited control accuracy
2
. Here we demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors
3
–
6
. Using 17 physical qubits in a superconducting circuit, we encode quantum information in a distance-three logical qubit, building on recent distance-two error-detection experiments
7
–
9
. In an error-correction cycle taking only 1.1 μs, we demonstrate the preservation of four cardinal states of the logical qubit. Repeatedly executing the cycle, we measure and decode both bit-flip and phase-flip error syndromes using a minimum-weight perfect-matching algorithm in an error-model-free approach and apply corrections in post-processing. We find a low logical error probability of 3% per cycle when rejecting experimental runs in which leakage is detected. The measured characteristics of our device agree well with a numerical model. Our demonstration of repeated, fast and high-performance quantum error-correction cycles, together with recent advances in ion traps
10
, support our understanding that fault-tolerant quantum computation will be practically realizable.
By using 17 physical qubits in a superconducting circuit to encode quantum information in a surface-code logical qubit, fast (1.1 μs) and high-performance (logical error probability of 3%) quantum error-correction cycles are demonstrated.
Journal Article
Photon-Mediated Interactions Between Distant Artificial Atoms
by
Fedorov, Arkady
,
Wallraff, Andreas
,
Lalumière, Kevin
in
Artificial atoms
,
Atomic interactions
,
Atoms
2013
Photon-mediated interactions between atoms are of fundamental importance in quantum optics, quantum simulations, and quantum information processing. The exchange of real and virtual photons between atoms gives rise to nontrivial interactions, the strength of which decreases rapidly with distance in three dimensions. Here, we use two superconducting qubits in an open one-dimensional transmission line to study much stronger photon-mediated interactions. Making use of the possibility to tune these qubits by more than a quarter of their transition frequency, we observe both coherent exchange interactions at an effective separation of 3λ/4 and the creation of super-and subradiant states at a separation of one photon wavelength λ. In this system, collective atom-photon interactions and applications in quantum communication may be explored.
Journal Article
Controlling the dynamic range of a Josephson parametric amplifier
2014
One of the central challenges in the development of parametric amplifiers is the control of the dynamic range relative to its gain and bandwidth, which typically limits quantum limited amplification to signals which contain only a few photons per inverse bandwidth. Here, we discuss the control of the dynamic range of Josephson parametric amplifiers by using Josephson junction arrays. We discuss gain, bandwidth, noise, and dynamic range properties of both a transmission line and a lumped element based parametric amplifier. Based on these investigations we derive useful design criteria, which may find broad application in the development of practical parametric amplifiers.
Journal Article
The quantum technologies roadmap: a European community view
by
Gisin, Nicolas
,
Glaser, Steffen J
,
Esteve, Daniel
in
Applied physics
,
Communication
,
Computer simulation
2018
Within the last two decades, quantum technologies (QT) have made tremendous progress, moving from Nobel Prize award-winning experiments on quantum physics (1997: Chu, Cohen-Tanoudji, Phillips; 2001: Cornell, Ketterle, Wieman; 2005: Hall, Hänsch-, Glauber; 2012: Haroche, Wineland) into a cross-disciplinary field of applied research. Technologies are being developed now that explicitly address individual quantum states and make use of the 'strange' quantum properties, such as superposition and entanglement. The field comprises four domains: quantum communication, where individual or entangled photons are used to transmit data in a provably secure way; quantum simulation, where well-controlled quantum systems are used to reproduce the behaviour of other, less accessible quantum systems; quantum computation, which employs quantum effects to dramatically speed up certain calculations, such as number factoring; and quantum sensing and metrology, where the high sensitivity of coherent quantum systems to external perturbations is exploited to enhance the performance of measurements of physical quantities. In Europe, the QT community has profited from several EC funded coordination projects, which, among other things, have coordinated the creation of a 150-page QT Roadmap (http://qurope.eu/h2020/qtflagship/roadmap2016). This article presents an updated summary of this roadmap.
Journal Article
Controlling Atom-Photon Bound States in an Array of Josephson-Junction Resonators
2022
Engineering the electromagnetic environment of a quantum emitter gives rise to a plethora of exotic light-matter interactions. In particular, photonic lattices can seed long-lived atom-photon bound states inside photonic band gaps. Here, we report on the concept and implementation of a novel microwave architecture consisting of an array of compact superconducting resonators in which we have embedded two frequency-tunable artificial atoms. We study the atom-field interaction and access previously unexplored coupling regimes, in both the single- and double-excitation subspace. In addition, we demonstrate coherent interactions between two atom-photon bound states, in both resonant and dispersive regimes, that are suitable for the implementation of swap and cz two-qubit gates. The presented architecture holds promise for quantum simulation with tunable-range interactions and photon transport experiments in the nonlinear regime.
Journal Article
Realizing a deterministic source of multipartite-entangled photonic qubits
by
Akin, Abdulkadir
,
Besse, Jean-Claude
,
Eichler, Christopher
in
639/766/483/2802
,
639/766/483/3925
,
Humanities and Social Sciences
2020
Sources of entangled electromagnetic radiation are a cornerstone in quantum information processing and offer unique opportunities for the study of quantum many-body physics in a controlled experimental setting. Generation of multi-mode entangled states of radiation with a large entanglement length, that is neither probabilistic nor restricted to generate specific types of states, remains challenging. Here, we demonstrate the fully deterministic generation of purely photonic entangled states such as the cluster, GHZ, and W state by sequentially emitting microwave photons from a controlled auxiliary system into a waveguide. We tomographically reconstruct the entire quantum many-body state for up to
N
= 4 photonic modes and infer the quantum state for even larger
N
from process tomography. We estimate that localizable entanglement persists over a distance of approximately ten photonic qubits.
Deterministic generation of photonic multi-partite entangled states has previously been achieved for specific states using ad-hoc devices. Here, the authors present a single superconducting circuit device to deterministically generate a variety of states, namely W, GHZ, and cluster states.
Journal Article
Realizing a deep reinforcement learning agent for real-time quantum feedback
by
Akin, Abdulkadir
,
Kerschbaum, Michael
,
O’Sullivan, James
in
639/766/483/2802
,
639/766/483/481
,
Control systems
2023
Realizing the full potential of quantum technologies requires precise real-time control on time scales much shorter than the coherence time. Model-free reinforcement learning promises to discover efficient feedback strategies from scratch without relying on a description of the quantum system. However, developing and training a reinforcement learning agent able to operate in real-time using feedback has been an open challenge. Here, we have implemented such an agent for a single qubit as a sub-microsecond-latency neural network on a field-programmable gate array (FPGA). We demonstrate its use to efficiently initialize a superconducting qubit and train the agent based solely on measurements. Our work is a first step towards adoption of reinforcement learning for the control of quantum devices and more generally any physical device requiring low-latency feedback.
Real-time feedback control of quantum systems without relying on a description of the system itself is usually challenging. Here, the authors exploit deep reinforcement learning to realise feedback control for initialisation of a superconducting qubit on a submicrosecond timescale.
Journal Article
Single-Shot Quantum Nondemolition Detection of Individual Itinerant Microwave Photons
by
Walter, Theo
,
Gasparinetti, Simone
,
Kurpiers, Philipp
in
Accuracy
,
Coherence
,
Coplanar waveguides
2018
Single-photon detection is an essential component in many experiments in quantum optics, but it remains challenging in the microwave domain. We realize a quantum nondemolition detector for propagating microwave photons and characterize its performance using a single-photon source. To this aim, we implement a cavity-assisted conditional phase gate between the incoming photon and a superconducting artificial atom. By reading out the state of this atom in a single shot, we reach an external (internal) photon-detection fidelity of 50% (71%), limited by transmission efficiency between the source and the detector (75%) and the coherence properties of the qubit. By characterizing the coherence and average number of photons in the field reflected off the detector, we demonstrate its quantum nondemolition nature. We envisage applications in generating heralded remote entanglement between qubits and for realizing logic gates between propagating microwave photons.
Journal Article
Primary Thermometry of Propagating Microwaves in the Quantum Regime
2020
The ability to control and measure the temperature of propagating microwave modes down to very low temperatures is indispensable for quantum information processing and may open opportunities for studies of heat transport at the nanoscale, also in the quantum regime. Here, we propose and experimentally demonstrate primary thermometry of propagating microwaves using a transmon-type superconducting circuit. Our device operates continuously, with a sensitivity down to4×10−4photons/Hzand a bandwidth of 40 MHz. We measure the thermal occupation of the modes of a highly attenuated coaxial cable in a range of 0.001 to 0.4 thermal photons, corresponding to a temperature range from 35 mK to 210 mK at a frequency around 5 GHz. To increase the radiation temperature in a controlled fashion, we either inject calibrated, wideband digital noise, or heat the device and its environment. This thermometry scheme can find applications in benchmarking and characterization of cryogenic microwave setups, temperature measurements in hybrid quantum systems, and quantum thermodynamics.
Journal Article
Realizing quantum convolutional neural networks on a superconducting quantum processor to recognize quantum phases
by
Swiadek, François
,
Hartmann, Michael J.
,
Kerschbaum, Michael
in
639/766/119/2795
,
639/766/483/2802
,
639/766/483/481
2022
Quantum computing crucially relies on the ability to efficiently characterize the quantum states output by quantum hardware. Conventional methods which probe these states through direct measurements and classically computed correlations become computationally expensive when increasing the system size. Quantum neural networks tailored to recognize specific features of quantum states by combining unitary operations, measurements and feedforward promise to require fewer measurements and to tolerate errors. Here, we realize a quantum convolutional neural network (QCNN) on a 7-qubit superconducting quantum processor to identify symmetry-protected topological (SPT) phases of a spin model characterized by a non-zero string order parameter. We benchmark the performance of the QCNN based on approximate ground states of a family of cluster-Ising Hamiltonians which we prepare using a hardware-efficient, low-depth state preparation circuit. We find that, despite being composed of finite-fidelity gates itself, the QCNN recognizes the topological phase with higher fidelity than direct measurements of the string order parameter for the prepared states.
Quantum neural networks could help analysing the output of quantum computers and quantum simulators of growing complexity. Here, the authors use a 7-qubit superconducting quantum processor to show how a quantum convolutional neural network can correctly recognise the phase of a quantum many-body state.
Journal Article