Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
7,917 result(s) for "Walter, David"
Sort by:
Histone H4K20 methylation mediated chromatin compaction threshold ensures genome integrity by limiting DNA replication licensing
The decompaction and re-establishment of chromatin organization immediately after mitosis is essential for genome regulation. Mechanisms underlying chromatin structure control in daughter cells are not fully understood. Here we show that a chromatin compaction threshold in cells exiting mitosis ensures genome integrity by limiting replication licensing in G1 phase. Upon mitotic exit, chromatin relaxation is controlled by SET8-dependent methylation of histone H4 on lysine 20. In the absence of either SET8 or H4K20 residue, substantial genome-wide chromatin decompaction occurs allowing excessive loading of the origin recognition complex (ORC) in the daughter cells. ORC overloading stimulates aberrant recruitment of the MCM2-7 complex that promotes single-stranded DNA formation and DNA damage. Restoring chromatin compaction restrains excess replication licensing and loss of genome integrity. Our findings identify a cell cycle-specific mechanism whereby fine-tuned chromatin relaxation suppresses excessive detrimental replication licensing and maintains genome integrity at the cellular transition from mitosis to G1 phase. Cell cycle and replication need to be tightly regulated to ensure genome stability in mammalian cells. Here the authors provide a link between chromatin structure and DNA replication regulation by showing that chromatin compaction limits replication licensing thereby promoting genome integrity.
RB constrains lineage fidelity and multiple stages of tumour progression and metastasis
Mutations in the retinoblastoma (RB) tumour suppressor pathway are a hallmark of cancer and a prevalent feature of lung adenocarcinoma 1 – 3 . Although RB was the first tumour suppressor to be identified, the molecular and cellular basis that underlies selection for persistent RB loss in cancer remains unclear 4 – 6 . Methods that reactivate the RB pathway using inhibitors of cyclin-dependent kinases CDK4 and CDK6 are effective in some cancer types and are currently under evaluation for the treatment of lung adenocarcinoma 7 – 9 . Whether RB pathway reactivation will have therapeutic effects and whether targeting CDK4 and CDK6 is sufficient to reactivate RB pathway activity in lung cancer remains unknown. Here we model RB loss during lung adenocarcinoma progression and pathway reactivation in established oncogenic KRAS-driven tumours in mice. We show that RB loss enables cancer cells to bypass two distinct barriers during tumour progression. First, RB loss abrogates the requirement for amplification of the MAPK signal during malignant progression. We identify CDK2-dependent phosphorylation of RB as an effector of MAPK signalling and critical mediator of resistance to inhibition of CDK4 and CDK6. Second, RB inactivation deregulates the expression of cell-state-determining factors, facilitates lineage infidelity and accelerates the acquisition of metastatic competency. By contrast, reactivation of RB reprograms advanced tumours towards a less metastatic cell state, but is nevertheless unable to halt cancer cell proliferation and tumour growth due to adaptive rewiring of MAPK pathway signalling, which restores a CDK-dependent suppression of RB. Our study demonstrates the power of reversible gene perturbation approaches to identify molecular mechanisms of tumour progression, causal relationships between genes and the tumour suppressive programs that they control and critical determinants of successful cancer therapy. Loss of RB promotes both malignant progression and the development of metastatic disease; however, whereas reactivation of the RB pathway can revert metastatic tumour cell states to non-metastatic cell states, malignant cell proliferation is supported by MAPK–CDK2-dependent suppression of RB.
Bestowing beauty : masterpieces from Persian lands-selections from the Hossein Afshar collection
A rare look into the grandeur and distinctiveness of Persian art through one of the world's leading private collections. Bestowing Beauty showcases an assortment of stunning works from one of the world's most distinguished private collections of Persian art. Featuring more than 100 exquisite objects spanning many centuries, from the eve of the Islamic period in the 6th century to the end of the 19th century, this wide range of treasures demonstrates the remarkable depth and diversity of the Hossein Afshar Collection. Extensively illustrated and accompanied by essays from a group of internationally recognized scholars, this book's rich selection includes an array of ceramic works, rare Qur'an pages written in gold, precious inlaid metal wares, exquisite miniature paintings from Firdausi's Shahnama, sumptuous silk brocades and velvet embroideries, and monumental silk carpets from the apex of Safavid carpet production. These rarely seen works bring into focus the remarkable variety of techniques and innovations employed by Persian artists and artisans through the ages.
Evaluation of DNA yield from various tissue and sampling sources for use in single nucleotide polymorphism panels
Genetics studies are used by wildlife managers and researchers to gain inference into a population of a species of interest. To gain these insights, microsatellites have been the primary method; however, there currently is a shift from microsatellites to single nucleotide polymorphisms (SNPs). With the different DNA requirements between microsatellites and SNPs, an investigation into which samples can provide adequate DNA yield is warranted. Using samples that were collected from previous genetic projects from regions in the USA from 2014 to 2021, we investigated the DNA yield of eight sample categories to gain insights into which provided adequate DNA to be used in ddRADseq or already developed high- or medium-density SNP panels. We found seven sample categories that met the DNA requirements for use in all three panels, and one sample category that did not meet any of the three panels requirements; however, DNA integrity was highly variable and not all sample categories that met panel DNA requirements could be considered high quality DNA. Additionally, we used linear random-effects models to determine which covariates would have the greatest influence on DNA yield. We determined that all covariates (tissue type, storage method, preservative, DNA quality, time until DNA extraction and time after DNA extraction) could influence DNA yield.
Comparison of sample types from white-tailed deer (Odocoileus virginianus) for DNA extraction and analyses
Collection of biological samples for DNA is necessary in a variety of disciplines including disease epidemiology, landscape genetics, and forensics. Quantity and quality of DNA varies depending on the method of collection or media available for collection (e.g., blood, tissue, fecal). Blood is the most common sample collected in vials or on Whatman Flinders Technology Associates (FTA) cards with short- and long-term storage providing adequate DNA for study objectives. The focus of this study was to determine if biological samples stored on Whatman FTA Elute cards were a reasonable alternative to traditional DNA sample collection, storage, and extraction. Tissue, nasal swabs, and ocular fluid were collected from white-tailed deer ( Odocoileus virginianus ). Tissue samples and nasal swabs acted as a control to compare extraction and DNA suitability for microsatellite analysis for nasal swabs and ocular fluid extracted from FTA Elute cards. We determined that FTA Elute cards improved the extraction time and storage of samples and that nasal swabs and ocular fluid containing pigmented fluid were reasonable alternatives to traditional tissue DNA extractions.
Histone H4 lysine 20 mono-methylation directly facilitates chromatin openness and promotes transcription of housekeeping genes
Histone lysine methylations have primarily been linked to selective recruitment of reader or effector proteins that subsequently modify chromatin regions and mediate genome functions. Here, we describe a divergent role for histone H4 lysine 20 mono-methylation (H4K20me1) and demonstrate that it directly facilitates chromatin openness and accessibility by disrupting chromatin folding. Thus, accumulation of H4K20me1 demarcates highly accessible chromatin at genes, and this is maintained throughout the cell cycle. In vitro, H4K20me1-containing nucleosomal arrays with nucleosome repeat lengths (NRL) of 187 and 197 are less compact than unmethylated (H4K20me0) or trimethylated (H4K20me3) arrays. Concordantly, and in contrast to trimethylated and unmethylated tails, solid-state NMR data shows that H4K20 mono-methylation changes the H4 conformational state and leads to more dynamic histone H4-tails. Notably, the increased chromatin accessibility mediated by H4K20me1 facilitates gene expression, particularly of housekeeping genes. Altogether, we show how the methylation state of a single histone H4 residue operates as a focal point in chromatin structure control. While H4K20me1 directly promotes chromatin openness at highly transcribed genes, it also serves as a stepping-stone for H4K20me3-dependent chromatin compaction. The effect of histone H4 lysine 20 methylation (H4K20me) on chromatin accessibility are not well established. Here the authors show how H4K20 methylation regulates chromatin structure and accessibility to ensure precise transcriptional outputs through the cell cycle using genome-wide approaches, in vitro biophysical assays, and NMR.
SCFCyclin F-dependent degradation of CDC6 suppresses DNA re-replication
Maintenance of genome stability requires that DNA is replicated precisely once per cell cycle. This is believed to be achieved by limiting replication origin licensing and thereby restricting the firing of each replication origin to once per cell cycle. CDC6 is essential for eukaryotic replication origin licensing, however, it is poorly understood how CDC6 activity is constrained in higher eukaryotes. Here we report that the SCF Cyclin F ubiquitin ligase complex prevents DNA re-replication by targeting CDC6 for proteasomal degradation late in the cell cycle. We show that CDC6 and Cyclin F interact through defined sequence motifs that promote CDC6 ubiquitylation and degradation. Absence of Cyclin F or expression of a stable mutant of CDC6 promotes re-replication and genome instability in cells lacking the CDT1 inhibitor Geminin. Together, our work reveals a novel SCF Cyclin F -mediated mechanism required for precise once per cell cycle replication. To ensure genome stability, cells need to restrict DNA replication to once per cell cycle. Here the authors show that Cyclin F interacts with and targets the licensing factor CDC6 for degradation, preventing re-firing of replication origins.