Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
412 result(s) for "Walters, Brian"
Sort by:
This is not a normal animal book
\"An author and illustrator try to work together to create a book about animals, but have very different ideas about what it should look like\"-- Provided by publisher.
Tree planting has the potential to increase carbon sequestration capacity of forests in the United States
Several initiatives have been proposed to mitigate forest loss and climate change through tree planting as well as maintaining and restoring forest ecosystems. These initiatives have both inspired and been inspired by global assessments of tree and forest attributes and their contributions to offset carbon dioxide (CO₂) emissions. Here we use data from more than 130,000 national forest inventory plots to describe the contribution of nearly 1.4 trillion trees on forestland in the conterminous United States to mitigate CO₂ emissions and the potential to enhance carbon sequestration capacity on productive forestland. Forests and harvested wood products uptake the equivalent of more than 14% of economy-wide CO₂ emissions in the United States annually, and there is potential to increase carbon sequestration capacity by ∼20% (−187.7 million metric tons [MMT] CO₂ ±9.1 MMT CO₂) per year by fully stocking all understocked productive forestland. However, there are challenges and opportunities to be considered with tree planting. We provide context and estimates from the United States to inform assessments of the potential contributions of forests in climate change mitigation associated with tree planting.
Reforestation can sequester two petagrams of carbon in US topsoils in a century
Soils are Earth’s largest terrestrial carbon (C) pool, and their responsiveness to land use and management make them appealing targets for strategies to enhance C sequestration. Numerous studies have identified practices that increase soil C, but their inferences are often based on limited data extrapolated over large areas. Here, we combine 15,000 observations from two national-level databases with remote sensing information to address the impacts of reforestation on the sequestration of C in topsoils (uppermost mineral soil horizons). We quantify C stocks in cultivated, reforesting, and natural forest topsoils; rates of C accumulation in reforesting topsoils; and their contribution to the US forest C sink. Our results indicate that reforestation increases topsoil C storage, and that reforesting lands, currently occupying >500,000 km² in the United States, will sequester a cumulative 1.3–2.1 Pg C within a century (13–21 Tg C·y−1). Annually, these C gains constitute 10% of the US forest sector C sink and offset 1% of all US greenhouse gas emissions.
Fixation strength in arthroscopic labral repair of the hip: A head-to-head comparison of the biomechanical performance of a biocompatible vs. all-suture anchor in the setting of acetabuloplasty
Much is known about the biomechanical performance of various types of suture anchors commonly used for labral fixation in the shoulder; however, similar studies in the hip are less common. We sought to compare all-suture and polyether ether ketone small-diameter anchors in the setting of labral repair during hip arthroscopy, with and without acetabuloplasty. We hypothesized that the biomechanical properties of the all-suture group when compared to polyether ether ketone anchors would be similar amongst native acetabula and significantly less following acetabuloplasty and that pullout forces would be reduced in the anterior and inferior regions of the acetabulum compared to the superior region. Bone density was measured in nine matched pairs of fresh-frozen cadaveric acetabula in the superior, anterosuperior, and anterior regions. Acetabuloplasty was performed in all three regions, while the contralateral acetabulum was left in situ as a control. Suture anchors were placed such that one each of two different types was placed within each region. Specimens were tested in cyclic fatigue and loaded to failure. The all-suture group had significantly higher cyclic displacement compared to the polyether ether ketone, but there was no significant difference in ultimate load, regardless of acetabuloplasty. Amongst all non-resected specimens, the lowest bone density was observed consistently in the inferior region. Our results indicate that, with or without acetabuloplasty, a small-diameter polyether ether ketone anchor appears to be more stable than an all-suture anchor, which needs to be set first.
Effects of outliers on remote sensing‐assisted forest biomass estimation: A case study from the United States national forest inventory
Large‐scale ecological sampling networks, such as national forest inventories (NFIs), collect in situ data to support biodiversity monitoring, forest management and planning, and greenhouse gas reporting. Data harmonization aims to link auxiliary remotely sensed data to field‐collected data to expand beyond field sampling plots, but outliers that arise in data harmonization—questionable observations because their values differ substantially from the rest—are rarely addressed. In this paper, we review the sources of commonly occurring outliers, including random chance (statistical outliers), definitions and protocols set by sampling networks, and temporal and spatial mismatch between field‐collected and remotely sensed data. We illustrate different types of outliers and the effects they have on estimates of above‐ground biomass population parameters using a case study of 292 NFI plots paired with airborne laser scanning (ALS) and Sentinel‐2 data from Sawyer County, Wisconsin, United States. Depending on the criteria used to identify outliers (sampling year, plot location error, nonresponse, presence of zeros and model residuals), as many as 53 of the 292 Forest Inventory and Analysis plot observations (18%) were identified as potential outliers using a single criterion and 111 plot observations (38%) if all criteria were used. Inclusion or removal of potential outliers led to substantial differences in estimates of mean and standard error of the estimate of biomass per unit area. The simple expansion estimator, which does not rely on ALS or other auxiliary data, was more sensitive to outliers than model‐assisted approaches that incorporated ALS and Sentinel‐2 data. Including Sentinel‐2 predictors showed minimal increases to the precision of our estimates relative to models with ALS predictors alone. Outliers arise from many causes and can be pervasive in data harmonization workflows. Our review and case study serve as a note of caution to researchers and practitioners that the inclusion or removal of potential outliers can have unintended consequences on population parameter estimates. When used to inform large‐scale biomass mapping, carbon markets, greenhouse gas reporting and environmental policy, it is necessary to ensure the proper use of NFI and remotely sensed data in geospatial data harmonization.
Disturbance and management effects on forest soil organic carbon stocks in the Pacific Northwest
Carbon (C)-informed forest management requires understanding how disturbance and management influence soil organic carbon (SOC) stocks at scales relevant to landowners and forest policy and management professionals. The continued growth of data sets and publications allows powerful synthesis approaches to be applied to such questions at increasingly fine scales. Here, we report results from a synthesis that used meta-analysis of published studies and two large observational databases to quantify disturbance and management impacts on SOC stocks. We conducted this, the third in a series of eco-regional SOC assessments, for the Pacific Northwest, which comprises ~8% of the land area but ~12% of the U.S. forest sector C sink. At the ecoregional level, our analysis indicated that fundamental patterns of vegetation, climate, and topography are far more important controls on SOC stocks than land use history, disturbance, or management. However, the same patterns suggested that increased warming, drying, wildland fire, and forest regeneration failure pose significant risks to SOC stocks across the region. Detailed meta-analysis results indicated that wildfires diminished SOC stocks throughout the soil profile, while prescribed fire only influenced surface organic materials and harvesting had no significant overall impact on SOC. Independent observational data corroborated the negative influence of fire on SOC derived from meta-analysis, suggested that harvest impacts may vary subregionally with climate or vegetation, and revealed that forests with agricultural uses (e.g., grazing) or legacies (e.g., cultivation) had smaller SOC stocks. We also quantified effects of a range of common forest management practices having either positive (organic amendments, nitrogen [N]-fixing vegetation establishment, inorganic N fertilization) or no overall effects on SOC (other inorganic fertilizers, urea fertilization, competition suppression through herbicides). In order to maximize the management applications of our results, we qualified them with ratings of confidence based on degree of support across approaches. Last, similar to earlier published assessments from other ecoregions, we supplemented our quantitative synthesis results with a literature review to arrive at a concise set of tactics for adapting management operations to site-specific criteria.
The Complicated Evolutionary Diversification of the Mpeg-1/Perforin-2 Family in Cnidarians
The invertebrate innate immune system is surprisingly complex, yet our knowledge is limited to a few select model systems. One understudied group is the phylum Cnidaria (corals, sea anemones, etc.). Cnidarians are the sister group to Bilateria and by studying their innate immunity repertoire, a better understanding of the ancestral state can be gained. Corals in particular have evolved a highly diverse innate immune system that can uncover evolutionarily basal functions of conserved genes and proteins. One rudimentary function of the innate immune system is defense against harmful bacteria using pore forming proteins. Macrophage expressed gene 1/Perforin-2 protein (Mpeg-1/P2) is a particularly important pore forming molecule as demonstrated by previous studies in humans and mice, and limited studies in non-bilaterians. However, in cnidarians, little is known about Mpeg-1/P2. In this perspective article, we will summarize the current state of knowledge of Mpeg-1/P2 in invertebrates, analyze identified Mpeg-1/P2 homologs in cnidarians, and demonstrate the evolutionary diversity of this gene family using phylogenetic analysis. We will also show that Mpeg-1 is upregulated in one species of stony coral in response to lipopolysaccharides and downregulated in another species of stony coral in response to white band disease. This data presents evidence that Mpeg-1/P2 is conserved in cnidarians and we hypothesize that it plays an important role in cnidarian innate immunity. We propose that future research focus on the function of Mpeg-1/P2 family in cnidarians to identify its primary role in innate immunity and beyond.
Land use change and forest management effects on soil carbon stocks in the Northeast U.S
BackgroundIn most regions and ecosystems, soils are the largest terrestrial carbon pool. Their potential vulnerability to climate and land use change, management, and other drivers, along with soils’ ability to mitigate climate change through carbon sequestration, makes them important to carbon balance and management. To date, most studies of soil carbon management have been based at either large or site-specific scales, resulting in either broad generalizations or narrow conclusions, respectively. Advancing the science and practice of soil carbon management requires scientific progress at intermediate scales. Here, we conducted the fifth in a series of ecoregional assessments of the effects of land use change and forest management on soil carbon stocks, this time addressing the Northeast U.S. We used synthesis approaches including (1) meta-analysis of published literature, (2) soil survey and (3) national forest inventory databases to examine overall effects and underlying drivers of deforestation, reforestation, and forest harvesting on soil carbon stocks. The three complementary data sources allowed us to quantify direction, magnitude, and uncertainty in trends.ResultsOur meta-analysis findings revealed regionally consistent declines in soil carbon stocks due to deforestation, whether for agriculture or urban development. Conversely, reforestation led to significant increases in soil C stocks, with variation based on specific geographic factors. Forest harvesting showed no significant effect on soil carbon stocks, regardless of place-based or practice-specific factors. Observational soil survey and national forest inventory data generally supported meta-analytic harvest trends, and provided broader context by revealing the factors that act as baseline controls on soil carbon stocks in this ecoregion of carbon-dense soils. These factors include a range of soil physical, parent material, and topographic controls, with land use and climate factors also playing a role.ConclusionsForest harvesting has limited potential to alter forest soil C stocks in either direction, in contrast to the significant changes driven by land use shifts. These findings underscore the importance of understanding soil C changes at intermediate scales, and the need for an all-lands approach to managing soil carbon for climate change mitigation in the Northeast U.S.
Insect and Disease Disturbances Correlate With Reduced Carbon Sequestration in Forests of the Contiguous United States
Major efforts are underway to harness the carbon sequestration capacity of forests to combat global climate change. However, tree damage and death associated with insect and disease disturbance can reduce this carbon sequestration capacity. We quantified average annual changes in live tree carbon accumulation associated with insect and disease disturbances utilizing the most recent (2001 – 2019) remeasurement data from National Forest Inventory plots in the contiguous United States. Forest plots recently impacted by insect disturbance sequestered on average 69% less carbon in live trees than plots with no recent disturbance, and plots recently impacted by disease disturbance sequestered on average 28% less carbon in live trees than plots with no recent disturbance. Nationally, we estimate that carbon sequestration by live trees, defined as the estimated average annual rate of above- and belowground carbon accumulation in live trees (diameter at breast height ≥ 2.54 cm) on forest land, has been reduced by 9.33 teragrams carbon per year (95% confidence interval: 7.11 to 11.58) in forests that have experienced recent insect disturbance and 3.49 teragrams carbon per year (95% confidence interval: 1.30 to 5.70) in forests that have experienced recent disease disturbance, for a total reduction of 12.83 teragrams carbon per year (95% confidence interval: 8.41 to 17.28). Strengthened international trade policies and phytosanitary standards as well as improved forest management have the potential to protect forests and their natural capacity to contribute to climate change mitigation.