Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
34 result(s) for "Wan Ibrahim, Wan Mastura"
Sort by:
Synthesis of Metakaolin Based Alkali Activated Materials as an Adsorbent at Different Na2SiO3/NaOH Ratios and Exposing Temperatures for Cu2+ Removal
Water contamination is a major issue due to industrial releases of hazardous heavy metals. Copper ions are among the most dangerous heavy metals owing to their carcinogenicity and harmful effects on the environment and human health. Adsorption of copper ions using alkali activated materials synthesized through the polycondensation reaction of an alkali source and aluminosilicates is the most promising technique, and has a high adsorption capability owing to a large surface area and pore volume. This research focuses on the effect of the alkaline activator ratio, which is a sodium silicate to sodium hydroxide ratio. Various exposing temperatures on metakaolin based alkali activated materials on a surface structure with excellent functional properties can be used as adsorbent materials for the removal of copper ions. A variety of mix designs were created with varying sodium silicate to sodium hydroxide ratios, with a fixed sodium hydroxide molarity, metakaolin to alkali activator ratio, hydrogen peroxide, and surfactant content of 10 M, 0.8, 1.00 wt%, and 3.0 wt%, respectively. Most wastewater adsorbents need high sintering temperatures, requiring an energy-intensive and time-consuming manufacturing process. In this way, metakaolin-based alkali activated materials are adsorbent and may be produced easily by solidifying the sample at 60 °C without using much energy. The specific surface area, water absorption, microstructure, phase analysis, functional group analysis, and adsorption capability of copper ions by metakaolin based alkali activated materials as adsorbents were evaluated. The water absorption test on the samples revealed that the sodium silicate to sodium hydroxide 0.5 ratio had the highest water absorption percentage of 36.24%, superior pore size distribution, and homogeneous porosity at 60 °C, with a surface area of 24.6076 m2/g and the highest copper ion uptake of 63.726 mg/g with 95.59% copper ion removal efficiency at adsorption condition of pH = 5, a dosage of 0.15 g, 100 mg/L of the initial copper solution, the temperature of 25 °C, and contact time of 60 min. It is concluded that self-supported metakaolin based alkali activated material adsorbents synthesized at low temperatures effectively remove copper ions in aqueous solutions, making them an excellent alternative for wastewater treatment applications.
Chemical Distributions of Different Sodium Hydroxide Molarities on Fly Ash/Dolomite-Based Geopolymer
Geopolymers are an inorganic material in an alkaline environment that is synthesized with alumina–silica gel. The structure of geopolymers consists of an inorganic chain of material and a covalent-bound molecular system. Currently, Ordinary Portland Cement (OPC) has caused carbon dioxide (CO2) emissions which causes greenhouse effects. This analysis investigates the impact on fly ash/dolomite-based-geopolymer with various molarities of sodium hydroxide solutions which are 6 M, 8 M, 10 M, 12 M and 14 M. The samples of fly ash/dolomite-based-geopolymer were prepared with the usage of solid to liquid of 2.0, by mass and alkaline activator ratio of 2.5, by mass. After that, the geopolymer was cast in 50 × 50 × 50 mm molds before testing after 7 days of curing. The samples were tested on compressive strength, density, water absorption, morphology, elemental distributions and phase analysis. From the results, the usage of 8 M of NaOH gave the optimum properties for the fly ash/dolomite-based geopolymer. The elemental distribution analysis exposes the Al, Si, Ca, Fe and Mg chemical distribution of the samples from the selected area. The distribution of the elements is related to the compressive strength and compared with the chemical composition of the fly ash and dolomite.
Effect of Solid-To-Liquids and Na2SiO3-To-NaOH Ratio on Metakaolin Membrane Geopolymers
Geopolymer is synthesized by polycondensation of SiO4 and AlO4 aluminosilicate complexes, tetrahedral frames linked with shared sialate oxygen. This paper studies the effect of the solids-to-fluids (S/L) and Na2SiO3/NaOH proportions on the preparing of metakaolin inorganic membrane geopolymer. By consolidating a mixture of metakaolin with sodium hydroxide, sodium silicate and foaming agent, the geopolymer membrane was made in required shape about 1 cm and cured at 80°C for 24 hours. After the curing process, the properties of the samples were tested on days 7. Sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solution were utilized as an alkaline activator with a NaOH fixation fixed at 10 M. The geopolymer inorganic membrane tests were set up with various S/L proportions (0.8, 1.0, 1.2 and 1.4) and Na2SiO3/NaOH proportions (0.5, 1.0, 1.5, 2.0 and 2.5). Aluminium (Al) powder as a foaming agent was used to create bubbles in porous structure and provide details on the development of membrane geopolymers. This metakaolin membrane, based on the geopolymer, was synthesized by a suspension that depends on the fast cementing mechanism of high-temperature slurries. Porous geopolymeric circles provided a homogeneous composition and quantitative distribution of pores. The water absorption, density, impact toughness testing and microstructure analyses were studied. However, considering the promising results, an adjustment in the mix design of the metakaolin inorganic membrane geopolymer mixtures could increase their mechanical properties without negatively affecting the mechanical properties and porosity, making these sustainable materials a suitable alternative to traditional porous cement concrete.
Investigating the efficacy of metakaolin based alkali activated materials for efficient removal of nickel and lead ions
This study presents a comprehensive investigation into the efficacy of metakaolin based alkali activated materials for the efficient removal of nickel and lead ions from aqueous solutions. The synthesis process involved the preparation of porous structures with high porosity, leading to an expanded surface area and an increased number of sorption sites. By applying alkali activation to the metakaolin, the reactivity is enhanced, forming hydrated phases that exhibited exceptional adsorption properties. This study examined the ideal sodium hydroxide molarity and metakaolin/activator ratios for producing metakaolin-based alkali activated materials based on the physical properties and capacity to adsorb nickel and lead ions. The solution with 10M sodium hydroxide and a 0.8 solid-to-liquid ratio had the best nickel and lead ion removal efficiency. This ratio formed metakaolin-based alkali-activated materials with suitable physical properties and porosity for efficient adsorption. The results demonstrated an outstanding removal efficiency of nickel and lead ions of 95.78% and 93.7%, respectively within 60 min contact duration. Moreover, the optimal ratio revealed to a evolution of muscovite phases that enhances adsorption capacity and removal efficiency. The adsorption process was found to be rapid coupled with promising structural properties, highlighting the potential of the metakaolin-based alkali-activated materials as an adsorbent for efficient heavy metal removal.
Assessment of Geopolymer Concrete for Underwater Concreting Properties
For ages, concrete has been used to construct underwater structures. Concrete laying underwater is a very complex procedure important to the success or failure of underwater projects. This paper elucidates the influence of alkali activator ratios on geopolymers for underwater concreting; focusing on the geopolymer concrete synthesized from fly ash and kaolin activated using sodium hydroxide and sodium silicate solutions. The geopolymer mixtures were designed to incorporate multiple alkali activator ratios to evaluate their effects on the resulting geopolymers’ properties. The fresh concrete was molded into 50 mm cubes in seawater using the tremie method and tested for its engineering properties at 7 and 28 days (curing). The control geopolymer and underwater geopolymers’ mechanical properties, such as compressive strength, water absorption density, and setting time were also determined. The differences between the control geopolymer and underwater geopolymer were determined using phase analysis and functional group analysis. The results show that the geopolymer samples were optimally strengthened at a 2.5 alkali activator ratio, and the mechanical properties of the control geopolymer exceeded that of the underwater geopolymer. However, the underwater geopolymer was determined to be suitable for use as underwater concreting material as it retains 70% strength of the control geopolymer.
Phase Analysis of Different Liquid Ratio on Metakaolin/Dolomite Geopolymer
Geopolymer is widely studied nowadays in various scope of studies. Some of the ongoing studies are the study of the various materials towards the geopolymer strength produced. Meanwhile, some of the studies focus on the mixing of the geopolymer itself. This paper discussed the phase analysis of metakaolin/dolomite geopolymer for different solid to the liquid ratio which was, 0.4, 0.6, 0.8, and 1.0, and the properties that affected the geopolymer based on the phases. The constant parameters in this study were the percentage of metakaolin and dolomite used. The metakaolin used was 80% meanwhile dolomite usage was 20%. Besides that, the molarity of NaOH used is 10M and the alkaline activator ratio used is 2.0. All the samples were tested at 28 days of curing. The results show that the 0.8 solid to the liquid ratio used gave better properties compare to other solid to liquid ratio. The phases analyzed were quartz, sillimanite, mullite, and faujasite. The 0.8 S/L ratio shows the better properties compared to others by the test of phase analysis, compressive strength morphology analysis, and functional group analysis.
A Review of Geopolymer Based Metakaolin Membrane as an Effective Adsorbent for Waste Water Treatment
Geopolymer-based products help eco-accommodating sources of materials such as metakaolin, slag or fly ash. This review explores the blend configuration to generate geopolymer-based metakaolin membrane metakaolin and to evaluate the impact of a range of geopolymer-based metakaolin sintering temperatures at a temperature of 50 °C, 60 °C, 70 °C and 80 °C. As the quick development of a modern culture contributes to a large increase in interest in water, adsorption is taken closer to examined waste water extraction of the adsorption and repulsion of a metakaolin membrane geopolymer. Membrane waste water treatment is chosen to explore simple and inorganic membrane preparation techniques that have long help lives and low production costs. Reviews for geopolymer-based metakaolin membrane were therefore synthesized via a suspension that depends on the quick solidification method of high temperature suspension geopolymer slurries that were used as an adsorbent for treating waste water. Porous geopolymeric spheres have developed a homogenous structure with the aid of electron microscopy and Brunauer Emmett Teller (BET) investigations.Since permeable materials are regularly adsorbents, this examination has analyzed the adsorption by membrane geopolymers of heavy metals. This finding will advance the formation of improved wastewater treatment systems and along these lines give an elective answer for ecological harm brought about by substantial metal contaminations. Along these lines, molar (SiO2/Na2O) ratio of metakaolin and sodium silicate are fundamental in assembling a sort of geopolymer-based inorganic membrane which does not require a high temperature sintering process. Adsorption and dismissal consolidated can be utilized for wastewater auxiliary electrical plating forms not exclusively to proficiently wipe out center and low groupings of overwhelming metals in wastewater yet in addition to wipe out little sub-atomic contaminants in wastewater.
Effect of Sintering Mechanism towards Crystallization of Geopolymer Ceramic—A Review
Globally, there is an increasing need for ceramic materials that have a variety of applications in the environment, for precision tools, and for the biomedical, electronics, and environmental industries. However, in order to obtain remarkable mechanical qualities, ceramics have to be manufactured at a high temperature of up to 1600 °C over a long heating period. Furthermore, the conventional approach presents issues with agglomeration, irregular grain growth, and furnace pollution. Many researchers have developed an interest in using geopolymer to produce ceramic materials, focusing on improving the performances of geopolymer ceramics. In addition to helping to lower the sintering temperature, it also improves the strength and other properties of the ceramics. Geopolymer is a product of polymerization involving aluminosilicate sources such as fly ash, metakaolin, kaolin, and slag through activation using an alkaline solution. The sources of the raw materials, the ratio of the alkaline solution, the sintering time, the calcining temperature, the mixing time, and the curing time may have significant impacts on the qualities. Therefore, this review aims to study the effects of sintering mechanisms on the crystallization of geopolymer ceramics, concerning the strength achieved. A future research opportunity is also presented in this review.
Effect of the Sintering Mechanism on the Crystallization Kinetics of Geopolymer-Based Ceramics
This research aims to study the effects of the sintering mechanism on the crystallization kinetics when the geopolymer is sintered at different temperatures: 200 °C, 400 °C, 600 °C, 800 °C, 1000 °C, and 1200 °C for a 3 h soaking time with a heating rate of 5 °C/min. The geopolymer is made up of kaolin and sodium silicate as the precursor and an alkali activator, respectively. Characterization of the nepheline produced was carried out using XRF to observe the chemical composition of the geopolymer ceramics. The microstructures and the phase characterization were determined by using SEM and XRD, respectively. The SEM micrograph showed the microstructural development of the geopolymer ceramics as well as identifying reacted/unreacted regions, porosity, and cracks. The maximum flexural strength of 78.92 MPa was achieved by geopolymer sintered at 1200 °C while the minimum was at 200 °C; 7.18 MPa. The result indicates that the flexural strength increased alongside the increment in the sintering temperature of the geopolymer ceramics. This result is supported by the data from the SEM micrograph, where at the temperature of 1000 °C, the matrix structure of geopolymer-based ceramics starts to become dense with the appearance of pores.
A Review of Carbonate Minerals as an Additive to Geopolymer Materials
In Malaysia, several geopolymer materials were mainly from fly ashes, kaolin, metakaolin, and boiler ash which were mainly used to prosper sustainable development especially in the building and construction sector. Geopolymers can be classified as inorganic materials that were formed with the reaction between alminosilicate materials and alkaline solutions. This reaction causing a crystalline compounds mixture to form that toughen to become a novel compound through a process called geopolymerization process. These geopolymer materials have many admirable advantages, including high strength, small shrinkage, decent thermal resistance and good chemical resistance. Although they were used as a stand-alone material with great properties, combination with another material might be another way to improve their properties. A few studies had shown that the geopolymer material can achieve better properties with the addition of moderate amount of calcium-containing material to a geopolymer. The addition of carbonate materials can have insignificant effect on the geopolymer configuration and properties. Thus, this paper review the usage of carbonate materials for example Dolomite (CaMg(CO3)2) and Calcite (CaCO3) as an addition into these geopolymer material.