Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
142 result(s) for "Wanders, Ronald J.A"
Sort by:
Metabolic rerouting via SCD1 induction impacts X-linked adrenoleukodystrophy
X-linked adrenoleukodystrophy (ALD) is a progressive neurodegenerative disease caused by mutations in ABCD1, the peroxisomal very long-chain fatty acid (VLCFA) transporter. ABCD1 deficiency results in accumulation of saturated VLCFAs. A drug screen using a phenotypic motor assay in a zebrafish ALD model identified chloroquine as the top hit. Chloroquine increased expression of stearoyl-CoA desaturase-1 (scd1), the enzyme mediating fatty acid saturation status, suggesting that a shift toward monounsaturated fatty acids relieved toxicity. In human ALD fibroblasts, chloroquine also increased SCD1 levels and reduced saturated VLCFAs. Conversely, pharmacological inhibition of SCD1 expression led to an increase in saturated VLCFAs, and CRISPR knockout of scd1 in zebrafish mimicked the motor phenotype of ALD zebrafish. Importantly, saturated VLCFAs caused ER stress in ALD fibroblasts, whereas monounsaturated VLCFA did not. In parallel, we used liver X receptor (LXR) agonists to increase SCD1 expression, causing a shift from saturated toward monounsaturated VLCFA and normalizing phospholipid profiles. Finally, Abcd1-/y mice receiving LXR agonist in their diet had VLCFA reductions in ALD-relevant tissues. These results suggest that metabolic rerouting of saturated to monounsaturated VLCFAs may alleviate lipid toxicity, a strategy that may be beneficial in ALD and other peroxisomal diseases in which VLCFAs play a key role.
A Lethal Defect of Mitochondrial and Peroxisomal Fission
Some types of neuropathy are caused by mutant dynamin proteins, which prevent the fusion of mitochondria. In this article, an infant with severe and lethal neuropathy was found to have elongated, tubular mitochondria and peroxisomes and to carry a mutation in the gene encoding dynamin-like protein 1. The mutant protein seemed to prevent mitochondrial and peroxisomal fission. An infant with severe and lethal neuropathy was found to have elongated, tubular mitochondria and peroxisomes and to carry a mutation in the gene encoding dynamin-like protein 1. The eukaryotic cell must control the fusion and fission of its organelles to maintain an ordered and dynamic subcellular organization. Key proteins in these processes are members of the dynamin superfamily of large, conserved guanosine triphosphatases (GTPases) that participate in various cellular processes, including the fission of mitochondria and peroxisomes. 1 , 2 Three autosomal dominant neuropathies have been linked to mutations in three separate dynamin genes. 3 – 5 We describe a newborn girl with a lethal disorder and a dominant-negative mutation in a fourth dynamin gene, which encodes dynamin-like protein 1 (DLP1). The mutation is associated with a severe defect in the . . .
Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies
Cardiomyocytes generated from induced pluripotent cells hold great promise for understanding and treating heart disease. William Pu and his colleagues apply new technologies for studying such cardiomyocytes from patients with Barth syndrome to explore how the mitochondrial defects characteristic of this syndrome lead to heart dysfunction. Study of monogenic mitochondrial cardiomyopathies may yield insights into mitochondrial roles in cardiac development and disease. Here, we combined patient-derived and genetically engineered induced pluripotent stem cells (iPSCs) with tissue engineering to elucidate the pathophysiology underlying the cardiomyopathy of Barth syndrome (BTHS), a mitochondrial disorder caused by mutation of the gene encoding tafazzin ( TAZ ). Using BTHS iPSC-derived cardiomyocytes (iPSC-CMs), we defined metabolic, structural and functional abnormalities associated with TAZ mutation. BTHS iPSC-CMs assembled sparse and irregular sarcomeres, and engineered BTHS 'heart-on-chip' tissues contracted weakly. Gene replacement and genome editing demonstrated that TAZ mutation is necessary and sufficient for these phenotypes. Sarcomere assembly and myocardial contraction abnormalities occurred in the context of normal whole-cell ATP levels. Excess levels of reactive oxygen species mechanistically linked TAZ mutation to impaired cardiomyocyte function. Our study provides new insights into the pathogenesis of Barth syndrome, suggests new treatment strategies and advances iPSC-based in vitro modeling of cardiomyopathy.
Metabolic Interplay between Peroxisomes and Other Subcellular Organelles Including Mitochondria and the Endoplasmic Reticulum
Peroxisomes are unique subcellular organelles which play an indispensable role in several key metabolic pathways which include: (1.) etherphospholipid biosynthesis; (2.) fatty acid beta-oxidation; (3.) bile acid synthesis; (4.) docosahexaenoic acid (DHA) synthesis; (5.) fatty acid alpha-oxidation; (6.) glyoxylate metabolism; (7.) amino acid degradation, and (8.) ROS/RNS metabolism. The importance of peroxisomes for human health and development is exemplified by the existence of a large number of inborn errors of peroxisome metabolism in which there is an impairment in one or more of the metabolic functions of peroxisomes. Although the clinical signs and symptoms of affected patients differ depending upon the enzyme which is deficient and the extent of the deficiency, the disorders involved are usually (very) severe diseases with neurological dysfunction and early death in many of them. With respect to the role of peroxisomes in metabolism it is clear that peroxisomes are dependent on the functional interplay with other subcellular organelles to sustain their role in metabolism. Indeed, whereas mitochondria can oxidize fatty acids all the way to CO2 and H2O, peroxisomes are only able to chain-shorten fatty acids and the end products of peroxisomal beta-oxidation need to be shuttled to mitochondria for full oxidation to CO2 and H2O. Furthermore, NADH is generated during beta-oxidation in peroxisomes and beta-oxidation can only continue if peroxisomes are equipped with a mechanism to reoxidize NADH back to NAD(+), which is now known to be mediated by specific NAD(H)-redox shuttles. In this paper we describe the current state of knowledge about the functional interplay between peroxisomes and other subcellular compartments notably the mitochondria and endoplasmic reticulum for each of the metabolic pathways in which peroxisomes are involved.
Peripheral nervous system plasmalogens regulate Schwann cell differentiation and myelination
Rhizomelic chondrodysplasia punctata (RCDP) is a developmental disorder characterized by hypotonia, cataracts, abnormal ossification, impaired motor development, and intellectual disability. The underlying etiology of RCDP is a deficiency in the biosynthesis of ether phospholipids, of which plasmalogens are the most abundant form in nervous tissue and myelin; however, the role of plasmalogens in the peripheral nervous system is poorly defined. Here, we used mouse models of RCDP and analyzed the consequence of plasmalogen deficiency in peripheral nerves. We determined that plasmalogens are crucial for Schwann cell development and differentiation and that plasmalogen defects impaired radial sorting, myelination, and myelin structure. Plasmalogen insufficiency resulted in defective protein kinase B (AKT) phosphorylation and subsequent signaling, causing overt activation of glycogen synthase kinase 3β (GSK3β) in nerves of mutant mice. Treatment with GSK3β inhibitors, lithium, or 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8) restored Schwann cell defects, effectively bypassing plasmalogen deficiency. Our results demonstrate the requirement of plasmalogens for the correct and timely differentiation of Schwann cells and for the process of myelination. In addition, these studies identify a mechanism by which the lack of a membrane phospholipid causes neuropathology, implicating plasmalogens as regulators of membrane and cell signaling.
Neonatal carnitine concentrations in relation to gestational age and weight
Background Free carnitine has been measured in the Dutch newborn screening (NBS) program since 2007 with a referral threshold of ≤5 μmol/L, regardless of gestational age or birthweight. However, several studies suggest that carnitine concentrations may depend on gestational age and birthweight. We evaluated differences in postnatal day‐to‐day carnitine concentrations in newborns based on gestational age (GA) and/or weight for GA (WfGA). Methods A retrospective study was performed using data from the Dutch NBS. Dried blood spot (DBS) carnitine concentrations, collected between the 3rd and 10th day of life, of nearly 2 million newborns were included. Individuals were grouped based on GA and WfGA. Median carnitine concentrations were calculated for each group. Mann‐Whitney U tests, and chi‐square tests were applied to test for significant differences between groups. Results Preterm, postterm, and small for GA (SGA) newborns have higher carnitine concentrations at the third day of life compared to term newborns. The median carnitine concentration of preterm newborns declines from day 3 onwards, and approximates that of term newborns at the sixth day of life, while median concentrations of postterm and SGA newborns remain elevated at least throughout the first 10 days of life. Carnitine concentrations ≤5 μmol/L were found less frequently in SGA newborns and newborns born between 32 and 37 weeks of gestation, compared to term newborns. Conclusions Median carnitine concentrations in NBS DBS vary with day of sampling, GA, and WfGA. It is important to take these variables into account when interpreting NBS results..
Mutagenesis separates ATPase and thioesterase activities of the peroxisomal ABC transporter, Comatose
The peroxisomal ABC transporter, Comatose (CTS), a full length transporter from Arabidopsis has intrinsic acyl-CoA thioesterase (ACOT) activity, important for physiological function. We used molecular modelling, mutagenesis and biochemical analysis to identify amino acid residues important for ACOT activity. D863, Q864 and T867 lie within transmembrane helix 9. These residues are orientated such that they might plausibly contribute to a catalytic triad similar to type II Hotdog fold thioesterases. When expressed in Saccharomyces cerevisiae , mutation of these residues to alanine resulted in defective of β-oxidation. All CTS mutants were expressed and targeted to peroxisomes and retained substrate-stimulated ATPase activity. When expressed in insect cell membranes, Q864A and S810N had similar ATPase activity to wild type but greatly reduced ACOT activity, whereas the Walker A mutant K487A had greatly reduced ATPase and no ATP-dependent ACOT activity. In wild type CTS, ATPase but not ACOT was stimulated by non-cleavable C14 ether-CoA. ACOT activity was stimulated by ATP but not by non-hydrolysable AMPPNP. Thus, ACOT activity depends on functional ATPase activity but not vice versa, and these two activities can be separated by mutagenesis. Whether D863, Q864 and T867 have a catalytic role or play a more indirect role in NBD-TMD communication is discussed.
Metabolic rerouting via SCD1 induction impacts X-linked adrenoleukodystrophy
X-linked adrenoleukodystrophy (ALD) is a progressive neurodegenerative disease caused by mutations in ABCD1, the peroxisomal very long-chain fatty acid (VLCFA) transporter. ABCD1 deficiency results in accumulation of saturated VLCFAs. A drug screen using a phenotypic motor assay in a zebrafish ALD model identified chloroquine as the top hit. Chloroquine increased expression of stearoyl-CoA desaturase-1 (scd1), the enzyme mediating fatty acid saturation status, suggesting that a shift toward monounsaturated fatty acids relieved toxicity. In human ALD fibroblasts, chloroquine also increased SCD1 levels and reduced saturated VLCFAs. Conversely, pharmacological inhibition of SCD1 expression led to an increase in saturated VLCFAs, and CRISPR knockout of scd1 in zebrafish mimicked the motor phenotype of ALD zebrafish. Importantly, saturated VLCFAs caused ER stress in ALD fibroblasts, whereas monounsaturated VLCFA did not. In parallel, we used liver X receptor (LXR) agonists to increase SCD1 expression, causing a shift from saturated toward monounsaturated VLCFA and normalizing phospholipid profiles. Finally, [Abcd.sup.1-/y] mice receiving LXR agonist in their diet had VLCFA reductions in ALD-relevant tissues. These results suggest that metabolic rerouting of saturated to monounsaturated VLCFAs may alleviate lipid toxicity, a strategy that may be beneficial in ALD and other peroxisomal diseases in which VLCFAs play a key role.
Ataxia with loss of Purkinje cells in a mouse model for Refsum disease
Refsum disease is caused by a deficiency of phytanoyl-CoA hydroxylase (PHYH), the first enzyme of the peroxisomal α-oxidation system, resulting in the accumulation of the branched-chain fatty acid phytanic acid. The main clinical symptoms are polyneuropathy, cerebellar ataxia, and retinitis pigmentosa. To study the pathogenesis of Refsum disease, we generated and characterized a Phyh knockout mouse. We studied the pathological effects of phytanic acid accumulation in Phyh⁻/⁻ mice fed a diet supplemented with phytol, the precursor of phytanic acid. Phytanic acid accumulation caused a reduction in body weight, hepatic steatosis, and testicular atrophy with loss of spermatogonia. Phenotype assessment using the SHIRPA protocol and subsequent automated gait analysis using the CatWalk system revealed unsteady gait with strongly reduced paw print area for both fore- and hindpaws and reduced base of support for the hindpaws. Histochemical analyses in the CNS showed astrocytosis and up-regulation of calcium-binding proteins. In addition, a loss of Purkinje cells in the cerebellum was observed. No demyelination was present in the CNS. Motor nerve conduction velocity measurements revealed a peripheral neuropathy. Our results show that, in the mouse, high phytanic acid levels cause a peripheral neuropathy and ataxia with loss of Purkinje cells. These findings provide important insights in the pathophysiology of Refsum disease.
Clinical, biochemical, and mutational spectrum of peroxisomal acyl-coenzyme A oxidase deficiency
Peroxisomal acyl–coenzyme A (acyl‐CoA) oxidase deficiency is an autosomal recessive inborn error of peroxisomal fatty acid oxidation due to a deficiency of straight‐chain acyl‐CoA oxidase (SCOX). The biochemical hallmark of this disorder is the accumulation of very long‐chain fatty acids. Although some case reports and small series of patients have been published, a comprehensive overview of the clinical, biochemical, and mutational spectrum of this disorder is still lacking. For this reason, we report clinical information for a cohort of 22 patients with peroxisomal acyl‐CoA oxidase deficiency and the results from biochemical and mutation analyses in fibroblasts of the patients. No clear genotype‐phenotype correlation was observed. An intriguing mutation in the alternatively‐spliced transcript encoding the isoform SCOX‐exon 3II in a patient with normal expression of the transcript encoding the isoform SCOX‐exon 3I, prompted us to characterize these two isoforms of human SCOX. The recombinant SCOX‐exon 3I displayed activity toward medium‐chain fatty acyl‐CoAs and was not active with very long‐chain fatty acyl‐CoAs. In contrast, recombinant SCOX‐exon 3II was capable of oxidizing a broad range of substrates, including very long‐chain fatty acyl‐CoAs. These results explain why this patient with a mutation in exon 3II of the ACOX1 gene, but with normal expression of exon 3I, was indistinguishable from other patients with peroxisomal acyl‐CoA oxidase deficiency with respect to his clinical presentation and the biochemical abnormalities in his fibroblasts. Hum Mutat 28(9), 904–912, 2007. © 2007 Wiley‐Liss, Inc.