Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
115 result(s) for "Wang, Aolin"
Sort by:
Modified cobalt-manganese oxide-coated carbon felt anodes: an available method to improve the performance of microbial fuel cells
The novel MnCo2O4 (MCO/CF), CNTs-MnCo2O4 (CNTs-MCO/CF) and MnFe2O4-MnCo2O4 (MFO-MCO/CF) electrodes were prepared on carbon felt (CF) by simple hydrothermal and coating method as anodes for MFC. The modified anodes combine the electrocatalytic properties of transition metal oxides (TMOs), the high electrical conductivity of CNTs and the good biocompatibility of CF. These anodes play a synergistically role in the synthesis of structural, to realize high-efficiency electron transfer, low resistance and sufficient space for microbial colonization, while also ensuring high power density. The maximum power density of the composite electrodes CNTs-MCO/CF and MFO-MCO/CF were 4268 mW/m3 and 3660 mW/m3, respectively. The synergistic effect of multi-component effectively improves the performance of MFC. This work not only offers a good design and preparation concept for functional TMOs composite electrodes, but also provides an important guide for the fabrication of CNTs-doped MFC anodes.
G-computation of average treatment effects on the treated and the untreated
Background Average treatment effects on the treated (ATT) and the untreated (ATU) are useful when there is interest in: the evaluation of the effects of treatments or interventions on those who received them, the presence of treatment heterogeneity, or the projection of potential outcomes in a target (sub-) population. In this paper we illustrate the steps for estimating ATT and ATU using g-computation implemented via Monte Carlo simulation. Methods To obtain marginal effect estimates for ATT and ATU we used a three-step approach: fitting a model for the outcome, generating potential outcome variables for ATT and ATU separately, and regressing each potential outcome variable on treatment intervention. Results The estimates for ATT, ATU and average treatment effect (ATE) were of similar magnitude, with ATE being in between ATT and ATU as expected. In our illustrative example, the effect (risk difference [RD]) of a higher education on angina among the participants who indeed have at least a high school education (ATT) was −0.019 (95% CI: −0.040, −0.007) and that among those who have less than a high school education in India (ATU) was −0.012 (95% CI: −0.036, 0.010). Conclusions The g-computation algorithm is a powerful way of estimating standardized estimates like the ATT and ATU. Its use should be encouraged in modern epidemiologic teaching and practice.
Fusarium pseudograminearum biomass and toxin accumulation in wheat tissues with and without Fusarium crown rot symptoms
Fusarium crown rot (FCR) is an important and devastating disease of wheat ( Triticum aestivum ) caused by the fungus Fusarium pseudograminearum and related pathogens. Using two distinct susceptible cultivars, we investigated the isolation frequencies of F. pseudograminearum and quantified its biomass accumulation and the levels of the associated toxins deoxynivalenol (DON) and DON-3-glucoside (D3G) in inoculated field-grown wheat plants. We detected F. pseudograminearum in stem, peduncle, rachis, and husk tissues, but not in grains, whereas DON and D3G accumulated in stem, rachis, husk, and grain tissues. Disease severity was positively correlated with the frequency of pathogen isolation, F. pseudograminearum biomass, and mycotoxin levels. The amount of F. pseudograminearum biomass and mycotoxin contents in asymptomatic tissue of diseased plants were associated with the distance of the tissue from the diseased internode and the disease severity of the plant. Thus, apparently healthy tissue may harbor F. pseudograminearum and contain associated mycotoxins. This research helps clarify the relationship between F. pseudograminearum occurrence, F. pseudograminearum biomass, and mycotoxin accumulation in tissues of susceptible wheat cultivars with or without disease symptoms, providing information that can lead to more effective control measures.
Spray-induced gene silencing enables the characterization of gene function during pre-penetration stages in Blumeria graminis f. sp. tritici
Blumeria graminis f. sp. tritici ( Bgt ), the causal agent of wheat powdery mildew, poses a significant threat to global wheat production. As an obligate biotroph, Bgt is recalcitrant to stable genetic manipulation. Although host-induced gene silencing has been used for gene function studies, it remains ineffective for targeting genes active during pre-penetration stages. Consequently, the functional roles of many Bgt genes during pre-penetration stages remain largely unexplored. In this study, the feasibility of spray-induced gene silencing (SIGS) to characterize gene function during pre-penetration stages was evaluated. The results demonstrated that Bgt conidia and germ tubes efficiently took up environmental double-stranded RNA (dsRNA), enabling the targeted silencing of BgtActin . Exogenous application of BgtActin-dsRNA effectively reduced target gene expression and impaired infection of Bgt . BgtActin silencing predominantly induced abnormal appressoria and reduced disease severity when dsRNA was applied at 6 and 10 hours post-inoculation (hpi). In contrast, BgtActin was almost not silenced when dsRNA was applied at 2 hpi. These findings established SIGS as a promising tool for gene functional studies during the pre-penetration stages of Bgt and highlight the potential of RNA-based strategies for the control of wheat powdery mildew.
Opportunities for evaluating chemical exposures and child health in the United States: the Environmental influences on Child Health Outcomes (ECHO) Program
The Environmental Influences on Child Health Outcomes (ECHO) Program will evaluate environmental factors affecting children’s health (perinatal, neurodevelopmental, obesity, respiratory, and positive health outcomes) by pooling cohorts composed of >50,000 children in the largest US study of its kind. Our objective was to identify opportunities for studying chemicals and child health using existing or future ECHO chemical exposure data. We described chemical-related information collected by ECHO cohorts and reviewed ECHO-relevant literature on exposure routes, sources, and environmental and human monitoring. Fifty-six ECHO cohorts have existing or planned chemical biomonitoring data for mothers or children. Environmental phenols/parabens, phthalates, metals/metalloids, and tobacco biomarkers are each being measured by ≥15 cohorts, predominantly during pregnancy and childhood, indicating ample opportunities to study child health outcomes. Cohorts are collecting questionnaire data on multiple exposure sources and conducting environmental monitoring including air, dust, and water sample collection that could be used for exposure assessment studies. To supplement existing chemical data, we recommend biomonitoring of emerging chemicals, nontargeted analysis to identify novel chemicals, and expanded measurement of chemicals in alternative biological matrices and dust samples. ECHO’s rich data and samples represent an unprecedented opportunity to accelerate environmental chemical research to improve the health of US children.
Mediating roles of preterm birth and restricted fetal growth in the relationship between maternal education and infant mortality: A Danish population-based cohort study
Socioeconomic disparities in infant mortality have persisted for decades in high-income countries and may have become stronger in some populations. Therefore, new understandings of the mechanisms that underlie socioeconomic differences in infant deaths are essential for creating and implementing health initiatives to reduce these deaths. We aimed to explore whether and the extent to which preterm birth (PTB) and small for gestational age (SGA) at birth mediate the association between maternal education and infant mortality. We developed a population-based cohort study to include all 1,994,618 live singletons born in Denmark in 1981-2015. Infants were followed from birth until death, emigration, or the day before the first birthday, whichever came first. Maternal education at childbirth was categorized as low, medium, or high. An inverse probability weighting of marginal structural models was used to estimate the controlled direct effect (CDE) of maternal education on offspring infant mortality, further split into neonatal (0-27 days) and postneonatal (28-364 days) deaths, and portion eliminated (PE) by eliminating mediation by PTB and SGA. The proportion eliminated by eliminating mediation by PTB and SGA was reported if the mortality rate ratios (MRRs) of CDE and PE were in the same direction. The MRRs between maternal education and infant mortality were 1.63 (95% CI 1.48-1.80, P < 0.001) and 1.19 (95% CI 1.08-1.31, P < 0.001) for low and medium versus high education, respectively. The estimated proportions of these total associations eliminated by reducing PTB and SGA together were 55% (MRRPE = 1.27, 95% CI 1.15-1.40, P < 0.001) for low and 60% (MRRPE = 1.11, 95% CI 1.01-1.22, P = 0.037) for medium versus high education. The proportions eliminated by eliminating PTB and SGA separately were, respectively, 46% and 11% for low education (versus high education) and 48% and 13% for medium education (versus high education). PTB and SGA together contributed more to the association of maternal educational disparities with neonatal mortality (proportion eliminated: 75%-81%) than with postneonatal mortality (proportion eliminated: 21%-23%). Limitations of the study include the untestable assumption of no unmeasured confounders for the causal mediation analysis, and the limited generalizability of the findings to other countries with varying disparities in access and quality of perinatal healthcare. PTB and SGA may play substantial roles in the relationship between low maternal education and infant mortality, especially for neonatal mortality. The mediating role of PTB appeared to be much stronger than that of SGA. Public health strategies aimed at reducing neonatal mortality in high-income countries may need to address socially related prenatal risk factors of PTB and impaired fetal growth. The substantial association of maternal education with postneonatal mortality not accounted for by PTB or SGA could reflect unaddressed educational disparities in infant care or other factors.
The Quantitative Analyses for the Effects of Two Wheat Varieties With Different Resistance Levels on the Fungicide Control Efficacies to Powdery Mildew
Effective strategies to reduce the occurrence of wheat powdery mildew include the use of resistant varieties and application of fungicides. However, most studies rarely focus on the quantitative value of fungicide reduction using resistant varieties. To explore how the fungicides performed on different resistant wheat varieties to powdery mildew, field experiments were conducted during wheat growing seasons in 2018/19 and 2019/20 to investigate the control efficacies of enostroburin⋅epoxiconazole 18% SC and triadimefon 20% EC to wheat powdery mildew on a highly resistant wheat variety (“Baofeng104”) and a highly susceptible wheat variety (“Jingshuang16”). The analyses of variance on control efficacies showed that the control efficacies of enostroburin⋅epoxiconazole 18% SC to wheat powdery mildew were mostly significantly higher than triadimefon 20% EC under the same conditions (i.e., varieties, dosages). However, both fungicide and variety resistance made variabilities in the mildew disease index and played a significant role in mildew management. Particularly, the variety resistance made the greatest contribution in mildew-reducing, and the disease index could significantly be reduced on the highly resistant variety even in the absence of fungicide treatment. The control efficacies to mildew on the highly susceptible variety mainly depended on the high efficiency of fungicides whereas the highly resistant variety were mainly by virtue of variety resistance through the comparative analyses of linear regression models. Furthermore, the random-coefficient regression models and quantile models quantificationally expounded that the relationships between active ingredient dosage and disease index or control efficacy varied from the effects of variety, fungicide, and year, particular from variety. Thus, a dosage reference table of enostroburin⋅epoxiconazole 18% SC or triadimefon 20% EC for different resistant wheat varieties were provided; it would be helpful for users to formulate an appropriate dosage of fungicide on mildew management in the field and avoid overusing or superfluous application. Further study needs to consider the effects of fungicide reduction on wheat yields, only then the maximum-economic benefits on mildew management can be determined.
Positive effects of replacing commercial feeds by fresh black soldier fly (Hermetia illucens) larvae in the diets of Pacific white shrimp (Litopenaeus vannamei): Immune enzyme, water quality, and intestinal microbiota
This study investigated the effects of replacing commercial feeds with fresh black soldier fly larvae (BSFL) on the immune enzyme activities, water quality in the culturing environment, and intestinal microbiota of Pacific white shrimp ( Litopenaeus vannamei ). Five different feeding regimes were designed, in which 0% (control group), 25%, 50%, 75%, and 100% commercial feeds were replaced with equal wet weight of fresh BSFL, respectively. The experiment lasted for 45 days, and the results showed that the serum T-NOS (total nitric oxide synthase), AKP (alkaline phosphatase), and ACP (acid phosphatase) activity were significantly increased in the BSFL25% group. However, the immune enzymes of the hepatopancreas decreased significantly in all the BSFL-containing groups compared to the control group. Total ammonia nitrogen concentrations throughout the experimental phase and nitrate concentrations in the middle and later phases of the experiment were negatively correlated with the replacement rate of fresh BSFL in the diet, whereas pH was positively correlated with the replacement rate of fresh BSFL in the diet. Proteobacteria and Bacteroidetes were dominant phyla in the intestines of shrimps, but the relative abundances of Proteobacteria and Firmicutes decreased, with those of Bacteroidetes and Planctomycetes increased in the BSFL-containing groups. Among them, higher relative abundances of potential probiotics such as Motilimonas , Shimia , Pseudoalteromonas , and Shewanella and lower relative abundance of genus Vibrio were observed in the fresh BSFL-containing groups. Furthermore, shrimps fed with BSFL-containing diets had higher bacterial richness and diversity in the intestines. In conclusion, a proper replacement of commercial feed with fresh BSFL had a positive effects on the immune-related enzyme activities, water quality, and intestinal health in the L. vannamei .
Meta-Analysis of Maternal and Fetal Transcriptomic Data Elucidates the Role of Adaptive and Innate Immunity in Preterm Birth
Preterm birth (PTB) is the leading cause of newborn deaths around the world. Spontaneous preterm birth (sPTB) accounts for two-thirds of all PTBs; however, there remains an unmet need of detecting and preventing sPTB. Although the dysregulation of the immune system has been implicated in various studies, small sizes and irreproducibility of results have limited identification of its role. Here, we present a cross-study meta-analysis to evaluate genome-wide differential gene expression signals in sPTB. A comprehensive search of the NIH genomic database for studies related to sPTB with maternal whole blood samples resulted in data from three separate studies consisting of 339 samples. After aggregating and normalizing these transcriptomic datasets and performing a meta-analysis, we identified 210 genes that were differentially expressed in sPTB relative to term birth. These genes were enriched in immune-related pathways, showing upregulation of innate immunity and downregulation of adaptive immunity in women who delivered preterm. An additional analysis found several of these differentially expressed at mid-gestation, suggesting their potential to be clinically relevant biomarkers. Furthermore, a complementary analysis identified 473 genes differentially expressed in preterm cord blood samples. However, these genes demonstrated downregulation of the innate immune system, a stark contrast to findings using maternal blood samples. These immune-related findings were further confirmed by cell deconvolution as well as upstream transcription and cytokine regulation analyses. Overall, this study identified a strong immune signature related to sPTB as well as several potential biomarkers that could be translated to clinical use.
Facile Synthesis, Characterization, and Photocatalytic Evaluation of In2O3/SnO2 Microsphere Photocatalyst for Efficient Degradation of Rhodamine B
The tin dioxide (SnO2) photocatalyst has a broad application prospect in the degradation of toxic organic pollutants. In this study, micron-sized spherical SnO2 and flower indium oxide (In2O3) structures were prepared by a simple hydrothermal method, and the In2O3/SnO2 composite samples were prepared by a “two-step method”. Using Rhodamine B (RhB) as a model organic pollutant, the photocatalytic performance of the In2O3/SnO2 composites was studied. The photocurrent density of 1.0 wt.% In2O3/SnO2 was twice that of pure SnO2 or In2O3, and the degradation rate was as high as 97% after 240 min irradiation (87% after 120 min irradiation). The reaction rate was five times that of SnO2 and nine times that of In2O3. Combined with the trapping experiment, the transient photocurrent response, and the corresponding characterization of active substances, the possible degradation mechanism was that the addition of In2O3 inhibited the efficiency of electron–hole pair recombination, accelerated the electron transfer and enhanced the photocatalytic activity.