Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
51 result(s) for "Wang, Canbin"
Sort by:
Research on Power Supply Restoration in Flexible Interconnected Distribution Networks Considering Wind–Solar Uncertainties
The large-scale integration of Distributed Generation (DG) poses significant challenges to the stable operation of distribution networks. It is particularly crucial to explore the power supply restoration capability of Soft Open Points with Energy Storage (E-SOP) and enhance power supply dependability. To address this issue, this paper proposes a power supply restoration method for flexible interconnected distribution networks (FIDN) considering wind–solar uncertainty. First, the control strategy and mathematical model of E-SOP are analyzed. Second, a wind–solar uncertainty model is established, with the weighted sum of maximizing restored node active load and minimizing power loss as the objective function, followed by a detailed analysis of constraints. Then, chance constraints are introduced to transform the proposed problem into a Mixed-Integer Second-Order Cone Programming (MISOCP) model. The Dung Beetle Optimization (DBO) algorithm is improved through logistic chaotic mapping, golden sine strategy, and position update coefficient to construct a distribution network power supply restoration model. Finally, simulations are conducted on the IEEE 33-node system using a hybrid optimization algorithm that combines Improved Dung Beetle Optimization (IDBO) with MISOCP. The simulation results demonstrate that the proposed method can effectively maximize power supply restoration in outage areas, further enhance the self-healing capability of distribution networks, and verify the feasibility of the method.
A Flexible Interconnected Distribution Network Power Supply Restoration Method Based on E-SOP
To enhance the self-healing control capability of soft open points with energy storage (E-SOPs) and optimize the fault recovery performance in flexible interconnected distribution networks, this paper proposes a novel power supply restoration method based on E-SOP. The methodology begins with a comprehensive analysis of the E-SOP’s fundamental architecture and loss model. Subsequently, a dual-objective optimization function is formulated to maximize the sum of nodal active load restoration while minimizing network losses. The optimization problem is transformed into a second-order cone programming formulation under comprehensive operational constraints. To solve this complex optimization model, an innovative hybrid approach combining the Improved Whale Optimization Algorithm (IWOA) with second-order cone programming is developed. The proposed methodology is extensively validated using the IEEE 33-node test system. The experimental results demonstrate that this approach significantly enhances the power supply restoration capability of distribution networks while maintaining practical feasibility.
Gas permeation through graphdiyne-based nanoporous membranes
Nanoporous membranes based on two dimensional materials are predicted to provide highly selective gas transport in combination with extreme permeance. Here we investigate membranes made from multilayer graphdiyne, a graphene-like crystal with a larger unit cell. Despite being nearly a hundred of nanometers thick, the membranes allow fast, Knudsen-type permeation of light gases such as helium and hydrogen whereas heavy noble gases like xenon exhibit strongly suppressed flows. Using isotope and cryogenic temperature measurements, the seemingly conflicting characteristics are explained by a high density of straight-through holes (direct porosity of ∼0.1%), in which heavy atoms are adsorbed on the walls, partially blocking Knudsen flows. Our work offers important insights into intricate transport mechanisms playing a role at nanoscale. 2D nanoporous membranes are predicted to provide highly selective gas transport in combination with extreme permeance. Here authors demonstrate gas separation performance and transport mechanisms through membranes of graphdiyne, a quasi 2D material with a graphene-like structure.
Research on Flexible Mutual Aid Control Strategy of Interconnected Transformer Area Based on Distributed Power Flow Controller
To address the issues of uneven transformer loading and underutilized capacity in conventional distribution areas interconnected by bus-tie switches, this paper proposes a flexible mutual-aid control strategy based on the distributed power flow controller (DPFC). An equivalent model of the interconnected transformer area system is established, and the phasor relationships between the DPFC’s injected voltage amplitude, phase angle and transmitted power are analytically derived. On this basis, a capacity-ratio-oriented mutual-aid control strategy is developed, enabling the DPFC to dynamically distribute active power according to the rated capacities of interconnected transformers. A simulation model is built in PSCAD/EMTDC to validate the proposed method. The results demonstrate that the strategy achieves full power mutual aid among transformer areas, reducing the heavy-load transformer utilization from 76.67% to 30.56%, thereby realizing rational capacity allocation and improving the operational reliability and efficiency of the distribution network.
Three-dimensional printing of patient-specific plates for the treatment of acetabular fractures involving quadrilateral plate disruption
Background Complicated acetabular fractures comprise the most challenging field for orthopedists. The purpose of this study was to develop three-dimensional printed patient-specific (3DPPS) Ti-6Al-4 V plates to treat complicated acetabular fractures involving quadrilateral plate (QLP) disruption and to evaluate their efficacy. Methods Fifty patients with acetabular fractures involving QLP disruption were selected between January 2016 and June 2017. Patients were divided into a control group (Group A, 35 patients) and an experimental group (Group B, 15 patients), and were treated by the conventional method of shaping reconstruction plates or with 3DPPS Ti-6AL-4 V plates, respectively. The efficacy of Ti-6AL-4 V plates was evaluated by blood loss, operative time, reduction quality, postoperative residual displacement, and complications. Results The operative time and blood loss in Group B were reduced compared to Group A, and the difference was statistically significant ( P  < 0.05). There was no significant difference in reduction quality between the two groups ( P  > 0.05). Reduction quality in Group B was anatomic in 10 (66.7%), satisfactory in four (26.7%), and poor in one (6.7%). In Group A, they were anatomic in 18 (51.4%), satisfactory in 13 (37.1%), and poor in four (11.4%). Residual displacement in Group B was less than that in Group A, and the difference was statistically significant ( P  < 0.05). In Group B, one case exhibited loosening of the pubic screw postoperatively. In Group A, there was one case of wound infection, one of deep vein thrombosis (DVT) in the ipsilateral lower limb, one case of traumatic arthritis and two obturator nerve injuries. Conclusions The 3DPPS Ti-6AL-4 V plate is a feasible, accurate and effective implant for acetabular fracture treatment.
Central dislocation of femoral head without involvement of acetabular anterior and posterior columns
Objective This study was performed to explore the treatment of central dislocation of the femoral head without involvement of the acetabular columns. Methods Preoperatively, a three-dimensionally printed model of the patient’s pelvis was manufactured according to the patient’s computed tomography data. An all-locking anatomical plate was designed based on the mirror of the ipsilesional semi-pelvis. The fracture was reduced using reduction forceps and femoral traction via the lateral rectus approach. The customized plate was used as a template for reduction of the quadrilateral plate fracture. Results Reduction and fixation of this patient’s fracture was achieved with a customized all-locking anatomical plate with a propeller shape via the lateral rectus approach. Conclusions This report describes an isolated quadrilateral plate fracture with central dislocation of the femoral head without involvement of the columns, which is a rare injury that has not yet been classified. It was effectively treated using a customized all-locking anatomical plate with propeller shape via the lateral rectus approach.
Internal fixation of acetabular fractures in an older population using the lateral-rectus approach: short-term outcomes of a retrospective study
Purpose This study aims to examine the clinical efficacy and surgical techniques of the lateral-rectus approach for treatment of acetabular factures in elderly patients. Methods After appropriate exclusion, 65 elderly patients with an acetabular fracture who was treated through the lateral-rectus approach from January 2011 and October 2016 were selected retrospectively. By analyzing the medical records retrospectively, the patients’ characteristics, fracture type, mechanism of injury, comorbid conditions, ASA class, operative time, intra-operative blood loss, and post-operative complications were assessed. Clinical examination radiographs have been taken, align with the Matta evaluation system. Functional outcomes were evaluated using surveys including SF-36, Harris hip score, and modified Merle D’Aubigne-Postel. Results All 65 patients had undergone the single lateral-rectus approach successfully. Surgery duration was 101.23 min on average (45–210), and intra-operative bleeding was 798.46 ml on average (250–1800). According to the Matta radiological evaluation, the quality of reduction evaluated 1 week after surgery was rated as “anatomical” in 41 (63.1%) cases, “imperfect” in 12 (18.5%) cases, and “poor” in 12 (18.5%) cases. The modified Merle D’Aubigne-Postel score performed 18 months after surgery was categorized as excellent in 40 (61.5%) cases, good in 10 (15.4%) cases, and fair in 15 (23.1%) cases. The mean Harris Hip score was similar as present researches, being 87.18. The mean SF-36 score was 69.12 which was considered as normal for the group age 60 and older. Several complications were found, including screw loosening in 10 cases, fat liquefaction of incision in 2 cases, deep vein thrombosis in 2 cases, and temporary weakness of hip adductors in 5 cases. None of the patients had heterotopic ossification. Conclusions The lateral-rectus approach is a valuable alternative to the ilioinguinal and modified Stoppa approach, being the treatment of acetabular fractures in elderly patients.
Biocompatibility of Bespoke 3D-Printed Titanium Alloy Plates for Treating Acetabular Fractures
Treatment of acetabular fractures is challenging, not only because of its complicated anatomy but also because of the lack of fitting plates. Personalized titanium alloy plates can be fabricated by selective laser melting (SLM) but the biocompatibility of these three-dimensional printing (3D-printed) plates remains unknown. Plates were manufactured by SLM and their cytocompatibility was assessed by observing the metabolism of L929 fibroblasts incubated with culture medium extracts using a CCK-8 assay and their morphology by light microscopy. Allergenicity was tested using a guinea pig maximization test. In addition, acute systemic toxicity of the 3D-printed plates was determined by injecting extracts from the implants into the tail veins of mice. Finally, the histocompatibility of the plates was investigated by implanting them into the dorsal muscles of rabbits. The in vitro results suggested that cytocompatibility of the 3D-printed plates was similar to that of conventional plates. The in vivo data also demonstrated histocompatibility that was comparable between the two manufacturing techniques. In conclusion, both in vivo and in vitro experiments suggested favorable biocompatibility of 3D-printed titanium alloy plates, indicating that it is a promising option for treatment of acetabular fractures.
Gas permeation through graphdiyne-based nanoporous membranes
Nanoporous membranes based on two dimensional materials are predicted to provide highly selective gas transport in combination with extreme permeability. Here we investigate membranes made from multilayer graphdiyne, a graphene-like crystal with a larger unit cell. Despite being nearly a hundred of nanometers thick, the membranes allow fast, Knudsen-type permeation of light gases such as helium and hydrogen whereas heavy noble gases like xenon exhibit strongly suppressed flows. Using isotope and cryogenic temperature measurements, the seemingly conflicting characteristics are explained by a high density of straight-through holes (direct porosity of ~0.1%), in which heavy atoms are adsorbed on the walls, partially blocking Knudsen flows. Our work offers important insights into intricate transport mechanisms playing a role at nanoscale.
Dimethyl disulfide (DMDS) as an effective soil fumigant against nematodes in China
Root-knot nematode is an important soil pest in horticulture crops and constrains the protected cultivation development after methyl bromide (MB) was phased out in China. Dimethyl disulfide (DMDS) exhibits excellent efficacy against nematodes. Laboratory experiments and field trials were set up to clarify DMDS dose, efficacy, and yield. A dose-response experiment using three methods showed that DMDS presented high efficacy against the nematode Meloidogyne incongnita. The LC50 values of direct fumigation activity in the dessicator method were 0.086 and 0.070 mg L-1 for DMDS and 1,3-D, 29.865 and 18.851 mg L-1 for DMDS and 1,3-D of direct contact activity in the small tube method, 6.438 and 3.061 mg L-1 for DMDS and 1,3-D of soil fumigation activity in the soil fumigation method, respectively. The field trials indicated that DMDS showed an excellent efficacy of 80%-94% on root-knot nematode applied at 10-100 g m-2 on tomato in Tongzhou, Beijing. The crop yields showed no significant difference after applying 10-80 g m-2 DMDS. Results indicate that DMDS applied at 10 g m-2 for controlling root-knot nematode in Beijing is cost effective. In conclusion, DMDS is an excellent soil fumigant that can be used for controlling root-knot nematode and can be an potential novel alternative to MB in China.