Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
45 result(s) for "Wang, Ermeng"
Sort by:
Detoxification and recovery after cadmium exposure in the freshwater crab Sinopotamon henanense
Cadmium (Cd) is a common pollutant in the aquatic environment, which puts the health and safety of aquatic organisms and humans at risk. In the present study, the freshwater crab Sinopotamon henanense was exposed to Cd (0, 50, 100, and 500 μg·L -1 ) for 14 d (0–14th d), followed by 21 d (14–35th d) of depuration. The changes in Cd bioaccumulation, microstructure, biomacromolecules (polysaccharides, neutral lipids, DNA and total proteins), and biochemical parameters (SOD, CAT, GR, TrxR, MDA and AChE) in the gills and hepatopancreas were tested. The injured microstructure, activated antioxidant system, increased MDA, and inhibited AChE of the gills and hepatopancreas responded with progressive bioaccumulation of Cd. Meanwhile, the polysaccharides and neutral lipids in the hepatopancreas reduced and DNA synthesis enhanced. During depuration, more than 58.80 ± 8.53% and 13.84 ± 12.11% of Cd was excreted from the gills and hepatopancreas, respectively. Recovery of microstructure and biomacromolecules as well as alleviated oxidative damage and neurotoxicity were also found in these two organs. Additionally, based on PCA, I his , GR and MDA were identified as the optimal biomarkers indicating the health status of crabs. In conclusion, S. henanense could resist Cd stress through antioxidant defence and self-detoxification. Graphical abstract
Mitigative effects of zinc on cadmium-induced reproductive toxicity in the male freshwater crab Sinopotamon henanense
Cadmium (Cd) is a highly harmful environmental contaminant, which can cause reproductive toxicity. Zinc (Zn) is an essential trance element that may protect the organism from the harmful effects of Cd. However, the mechanism of Zn against Cd-induced reproductive toxicity remained to be elucidated. The aim of this study was to assess the effects of subchronic exposure to Cd on the relative testis weight (RTW), the histopathology, the activity of stress marker antioxidant enzymes, the level of lipid peroxidation of testis, as well as the mitigative effects of Zn on Cd-induced reproductive toxicity in male freshwater crab Sinopotamon henanense. For this purpose, male crabs were divided into 10 groups including a control group (without metals) and metal exposure groups with Cd alone in three concentrations and Cd combined with Zn in six concentrations for 14 days. The results showed that Cd evoked concentration-dependent reproductive toxicity of male Sinopotamon henanense as showed by decreased RTW, appearance of morphological lesions, increased SOD, CAT, GPx activity, and MDA levels. Nevertheless, Zn combined with Cd exposure significantly alleviated Cd-induced reproductive toxicity as proved by increased RTW, reappearance of normal histological morphology, increased SOD activity, recovered CAT and GPx activity, and decreased MDA levels in testis. Our study demonstrated that the application of Zn can mitigate Cd-induced reproductive toxicity by ameliorating the testicular oxidative stress and improving the antioxidant status.
Vision-Based Semantic Unscented FastSLAM for Indoor Service Robot
This paper proposes a vision-based Semantic Unscented FastSLAM (UFastSLAM) algorithm for mobile service robot combining the semantic relationship and the Unscented FastSLAM. The landmark positions and the semantic relationships among landmarks are detected by a binocular vision. Then the semantic observation model can be created by transforming the semantic relationships into the semantic metric map. Semantic Unscented FastSLAM can be used to update the locations of the landmarks and robot pose even when the encoder inherits large cumulative errors that may not be corrected by the loop closure detection of the vision system. Experiments have been carried out to demonstrate that the Semantic Unscented FastSLAM algorithm can achieve much better performance in indoor autonomous surveillance than Unscented FastSLAM.
Structures and Anaerobic Metabolic Activity of Attached Microbial Communities During Biofilm Formation in Aquaculture Systems
In this study, the structural characteristics of the attached microbial community during biofilm formation and the metabolic requirements under anaerobic conditions were evaluated. In particular, 16S rDNA sequencing technology was used to study the structural changes of the attached microbial community during biofilm formation (day 0, 10, 20, and 30) in an aquaculture system, and Biolog microplate technology was used to study metabolic characteristics under anaerobic conditions during biofilm formation. The AWCD (average well colour development), an indicator of carbon metabolism, of attached microorganisms during biofilm formation under anaerobic conditions differed significantly among time points (P < 0.05), and the carbon source utilization capacity was enhanced. Under anaerobic conditions during biofilm formation, the utilization of amines in six major carbon sources was the highest, followed by polymers, carbohydrates, amino acids, and carboxylic acids, and the utilization of phenols was the lowest. Under anaerobic conditions, the utilization rate by the attached microorganisms during biofilm formation was highest for Tween 40, followed by Tween 80, D-xylose, 4-hydroxybenzoic acid, α-D-glucose-1-phosphate, L-phenylalanine, and phenylethylamine. The 16s rDNA sequencing results showed that the dominant phyla of attached microorganisms during biofilm formation were mainly Proteobacteria, Bacteroidetes, Firmicutes, and Cyanobacteria. On the 10th and 20th days of biofilm formation, attached microorganisms were enriched for Rhodobacter of α-Proteobacteria and Janthinobacterium of β-Proteobacteria, which play important roles in biofilm denitrification. However, on the 30th day, enriched bacteria included the Burkholderiales of β-Proteobacteria, the Xanthomonadaceae and Thermomonas of γ-Proteobacteria, which function in cyanide decomposition.
Role of the IgM Fc Receptor in Immunity and Tolerance
Immunoglobulin (Ig) M is the first antibody isotype to appear during evolution, ontogeny and immune responses. IgM not only serves as the first line of host defense against infections but also plays an important role in immune regulation and immunological tolerance. For many years, IgM is thought to function by binding to antigen and activating complement system. With the discovery of the IgM Fc receptor (FcμR), it is now clear that IgM can also elicit its function through FcμR. In this review, we will describe the molecular characteristics of FcμR, its role in B cell development, maturation and activation, humoral immune responses, host defense, and immunological tolerance. We will also discuss the functional relationship between IgM-complement and IgM-FcμR pathways in regulating immunity and tolerance. Finally, we will discuss the potential involvement of FcμR in human diseases.
MZB1 promotes the secretion of J-chain–containing dimeric IgA and is critical for the suppression of gut inflammation
IgA is the most abundantly produced antibody in the body and plays a crucial role in gut homeostasis and mucosal immunity. IgA forms a dimer that covalently associates with the joining (J) chain, which is essential for IgA transport into the mucosa. Here, we demonstrate that the marginal zone B and B-1 cell-specific protein (MZB1) interacts with IgA through the α-heavy-chain tailpiece dependent on the penultimate cysteine residue and prevents the intracellular degradation of α-light-chain complexes. Moreover, MZB1 promotes J-chain binding to IgA and the secretion of dimeric IgA. MZB1-deficient mice are impaired in secreting large amounts of IgA into the gut in response to acute inflammation and develop severe colitis. Oral administration of a monoclonal IgA significantly ameliorated the colitis, accompanied by normalization of the gut microbiota composition. The present study identifies a molecular chaperone that promotes J-chain binding to IgA and reveals an important mechanism that controls the quantity, quality, and function of IgA.
Multiple-stimuli fluorescent responsive metallo-organic helicated cage arising from monomer and excimer emission
Effectively regulating monomer and excimer emission in a singular supramolecular luminous platform is challenging due to high difficulty of precise control over its aggregation and dispersion behavior when subjected to external stimuli. Here, we show a metallo-cage ( MTH ) featuring a triple helical motif that displays a unique dual emission. It arises from both intramolecular monomer and intermolecular excimer, respectively. The distorted molecular conformation and the staggered stacking mode of MTH excimer are verified through single crystal X-ray diffraction analysis. These structural features facilitate the switch between monomer and excimer emission, which are induced by changes in concentration and temperature. Significantly, adjusting the equilibrium between these two states in MTH enables the production of vibrant white light emission in both solution and solid state. Moreover, when combined with a PMMA (polymethyl methacrylate) substrate, the resulting thin films can serve as straightforward fluorescence thermometer and thermally activated information encryption materials. Effectively regulating monomer and excimer emission in a singular supramolecular luminous platform is challenging due to high difficulty of precise control over its aggregation and dispersion behavior when subjected to external stimuli. Here, the authors report a metallo-cage featuring a triple helical motif that displays a unique dual emission.
The Community Renewal of Shantytown Transformation in Old Industrial Cities: Evidence from Tiexi Worker Village in Shenyang, China
There are many problems, such as poverty, unemployment, poor infrastructure and how to improve the ecological environment, in the shantytowns of old industrial cities. Shantytowns are the most centralized areas with different contradictions, referred to as the ‘problem areas’ of urban sustainable development. The shantytown transformation of old industrial cities is a typical process of unit community disintegration, which is reflected not only in the reconstruction of physical space but also in the community renewal of social spatial integration and culture reconstruction. Based on qualitative research, questionnaires and in-depth interviews, taking Tiexi Worker Village in Shenyang as a research case, this paper attempts to analyse the characteristics and driving forces of the community renewal of shantytown transformation in old industrial cities. We found that the physical space of Tiexi Worker Village has changed considerably, which is embodied in its land use structure, living environment and community service facilities, reflecting the development of community function from simple industrial function to comprehensive functions. The residents in this community have experienced a transformation from a period of homogeneity to one of heterogeneity. The social network of the community has been destroyed. Social stratification, social differentiation and higher fluidity have occurred. Community renewal is mainly affected by macro factors such as policy regulation, economic driving, condition constraints, and micro factors such as residents’ choice of living space and willingness to renew their communities. The transformation policy of the old industrial zone and the development policy of the new urban area are the fundamental and deep-seated reasons for the renewal of Tiexi Worker Village, which determine the direction of the renewal and development of the community. The paid use of land and the development of the real estate industry are the direct stimulating factors for the renewal of Tiexi Worker Village, which become the direct reasons for the spatial transformation. The changes in the population in urban and rural areas and the promotion of traffic are the driving factors for the renewal of the community, while the choice of residents and their willingness regarding community renewal are the endogenous forces for promoting community renewal. Finally, the author attempts to put forward a model of the interlaced mechanism of the forming of community renewal at the macroscopic and microcosmic levels, which are the urban renewal and reconstruction and social space differentiation of community residents, respectively. Keywords: old industrial city; shantytown; community renewal; mechanism; Tiexi Worker Village
Both TGF-β1 and Smad4 regulate type I collagen expression in the muscle of grass carp, Ctenopharyngodon idella
Type I collagen is proven to make an important contribution to fish muscle quality. Our previous study has shown the Smad4-dependent regulation of type I collagen expression in the muscle of crisp grass carp fed with faba bean. However, the regulatory roles of TGF-β1 or TGF-β1/Smad4 on type I collagen remain unclear in ordinary grass carp fed with normal diets or in other fish species. To clarify this point, the effect of TGF-β1 and Smad4 over-expression and RNAi knockdown on type I collagen (COL1-α1 and COL1-α2) expression were tested in vitro (zebrafish ZF4 cells) and in vivo (grass carp) along with the TGF-β1/Smad4 co-expression and co-knockdown. The mRNA levels of TGF-β1, Smad4, and type I collagen were upregulated in the groups with over-expressed TGF-β1 and Smad4 and downregulated in the groups of TGF-β1 and Smad4 RNAi in comparison to controls in vitro (P < 0.05). Similarly, in the in vivo experiment, the mRNA abundance of TGF-β1, Smad4, and type I collagen of over-expression group was higher than the controls at 36 h (P < 0.05). Co-injection of TGF-β1/Smad4 over-expression and RNAi vectors generally showed the higher efficacy. This study revealed that TGF-β1 and Smad4 genes regulated type I collagen expression in grass carp muscle and zebrafish. These findings will provide references for the collagen regulation of other freshwater fishes.
Integration of Multi-Omics, Histological, and Biochemical Analysis Reveals the Toxic Responses of Nile Tilapia Liver to Chronic Microcystin-LR Exposure
Microcystin-LR (MC-LR) is a cyanobacterial metabolite produced during cyanobacterial blooms and is toxic to aquatic animals, and the liver is the main targeted organ of MC-LR. To comprehensively understand the toxicity mechanism of chronic exposure to environmental levels of MC-LR on the liver of fish, juvenile Nile tilapia were exposed to 0 μg/L (control), 1 μg/L (M1), 3 μg/L (M3), 10 μg/L (M10), and 30 μg/L (M30) MC-LR for 60 days. Then, the liver hepatotoxicity induced by MC-LR exposure was systematically evaluated via histological and biochemical determinations, and the underlying mechanisms were explored through combining analysis of biochemical parameters, multi-omics (transcriptome and metabolome), and gene expression. The results exhibited that chronic MC-LR exposure caused slight liver minor structural damage and lipid accumulation in the M10 group, while resulting in serious histological damage and lipid accumulation in the M30 group, indicating obvious hepatotoxicity, which was confirmed by increased toxicity indexes (i.e., AST, ALT, and AKP). Transcriptomic and metabolomic analysis revealed that chronic MC-LR exposure induced extensive changes in gene expression and metabolites in six typical pathways, including oxidative stress, apoptosis, autophagy, amino acid metabolism, primary bile acid biosynthesis, and lipid metabolism. Taken together, chronic MC-LR exposure induced oxidative stress, apoptosis, and autophagy, inhibited primary bile acid biosynthesis, and caused fatty deposition in the liver of Nile tilapia.