Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5 result(s) for "Wang, Fangruyue"
Sort by:
Case Report: Telitacicept in severe myasthenia gravis: a case study with multiple autoantibodies
Multi-antibody-positive myasthenia gravis (MG) presentations are relatively rare, often found in older patients, and generally predict a poor prognosis. We report a case of a female patient with generalized MG, testing positive for Titin antibodies (Titin-Ab), ryanodine receptor antibodies (RyR-Ab), and acetylcholine receptor antibodies (AChR-Ab), and resistant to acetylcholinesterase inhibitors. Following unsuccessful traditional therapies, she received Telitacicept, leading to significant improvements. This case underscores Telitacicept’s potential efficacy for similar patients and offers insights into the clinical characteristics of multi-antibody MG.
Coil embolization of anomalous systemic artery to the left lower lobe in an asymptomatic adult: a case report
Background Anomalous systemic artery to the left lower lobe (ASALLL) is a rare congenital anomaly. The primary symptoms include hemoptysis and lung infection, though some patients may remain asymptomatic. Currently, there is no consensus on the indications for treatment or the optimal choice of therapy for this condition. This case presents a case of an asymptomatic adult who underwent coil embolization. Case presentation A 48-year-old male was admitted to our hospital due to the discovery of a space-occupying lesion in the left hilum. The contrast-enhanced pulmonary computed tomography scan was used to diagnose the patient with an anomalous systemic artery to the left lower lobe. We performed coil embolization on this patient, who underwent a follow-up computed tomography angiography of the pulmonary and bronchial arteries one year later. Result demonstrated complete embolization of the abnormal systemic arteries and a slight reduction in the volume of the left lower lobe. Conclusion Coil embolization is a safe and minimally invasive procedure for adult patients who have an anomalous systemic artery to the left lower lobe.
Scientific issues with rodent models of neuromyelitis optic spectrum disorders
Neuromyelitis optica spectrum disorders (NMOSD) is a rare autoimmune disorder that causes severe inflammation in the central nervous system (CNS), primarily affecting the optic nerves, spinal cord, and brainstem. Aquaporin-4 immunoglobulin G antibodies (AQP4-IgG) are a diagnostic marker of the disease and play a significant role in its pathogenesis, though the exact mechanism is not yet fully understood. To develop rodent models that best simulate the in vivo pathological and physiological processes of NMOSD, researchers have been continuously exploring how to establish the ideal model. In this process, two key issues arise: 1) how the AQP4 antibody crosses the blood-brain barrier, and 2) the source of the AQP4 antibody. These two factors are critical for the successful development of rodent models of NMOSD. This paper reviews the current state of research on these two aspects.
Multiple sclerosis and COVID-19: a northern China survey
BackgroundThere is insufficient data on severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2) infection in Chinese patients with multiple sclerosis (pwMS). This study aims to explore the manifestation of pwMS during the Coronavirus disease 2019 (COVID-19) pandemic and the effect of SARS-CoV-2 infection on the prognosis of MS in northern China.MethodsIn this cross-sectional study, an online self-administered questionnaire and telephone interviews were conducted among pwMS of northern China. Clinical correlation of SARS-CoV-2 infection since the onset of the COVID-19 pandemic in northern China was analyzed.Results164 patients with an average age of 38.9 ± 12.2 years were included, of which 57.3% had a disease course ≤ 5 years. 33.5% of the patients were COVID-19 vaccinated. 87.2% received disease-modifying therapy (DMT), and the average immunotherapy duration was 1.9 ± 1.6 years. 83.5% were SARS-CoV-2 infected, 14.6% reported worsening of their original condition after infection, and 5.1% had a relapse of MS. Shorter disease course was independently related to infection risk (P = 0.046), whereas increasing age was related to aggravated behavioral symptoms (P = 0.008). However, gender, vaccination, and DMT were not associated with susceptibility or poor prognosis.ConclusionA shorter disease course is independently associated with an increased risk of SARS-CoV-2 infection, and age is associated with worsening disability. It seems to be safe and necessary to use DMT during the pandemic, however, the use of B cell-depletion agents should be approached with caution.
Advances and Challenges in Nano-Delivery Systems for Glioblastoma Treatment: A Comprehensive Review
Glioblastoma is the most aggressive and lethal primary brain tumor in adults, with current treatment options offering only limited improvement in patient survival. Despite the advancement of modalities such as immunotherapy, targeted therapy, gene therapy, focused ultrasound, and tumor-treating fields, therapeutic efficacy remains unsatisfactory due to challenges such as the blood-brain barrier, tumor heterogeneity, and treatment resistance. Nanotechnology has emerged as a promising platform to enhance the delivery, specificity, and combinatorial potential of these therapies. By enabling precise and multifunctional delivery of therapeutic agents, nanoscale systems hold the potential to overcome critical biological and pharmacological barriers in glioblastoma treatment. This review provides an overview of recent progress in nanomedicine-based strategies for glioblastoma, critically examines the key challenges that limit their clinical translation, and highlights innovative approaches designed to improve therapeutic outcomes. Future perspectives on how nanotechnology may reshape the landscape of brain tumor treatment are also discussed.