Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
146
result(s) for
"Wang, Fengzhong"
Sort by:
Influence of the Degree of Hydrolysis on Functional Properties and Antioxidant Activity of Enzymatic Soybean Protein Hydrolysates
2022
Soybean protein hydrolysates were prepared using two proteolytic enzymes (Alcalase and Protamex) and the degree of hydrolysis (DH) and their functional and antioxidant properties were evaluated. The highest DH value was 20%, with a yield of 19.77% and protein content of 51.64%. The total amino acid content was more than 41% for all protein hydrolysates. The protein hydrolysates from Protamex at pH 2.0 had excellent solubility, emulsifying activity, and foaming capacity, at 83.83%, 95.03 m2/g, and 93.84%, respectively. The water-holding capacity was 4.52 g/g for Alcalase, and the oil-holding capacity was 4.91 g/g for Protamex. The antioxidant activity (62.07%), as measured by the samples’ reaction with DPPH (2,2-diphenyl-1-picrylhydrazyl) and the reducing power (0.27) were the strongest for Protamex. An ABTS activity rate of 70.21% was recorded for Alcalase. These findings indicated a strong potential for the utilization of soybean protein hydrolysates to improve the functional properties and antioxidant activity of soybeans as well as their nutritional values.
Journal Article
Neuromodulatory Effects of Arecoline on Anxiety-like Behavior in Mice Exposed to Chronic Unpredictable Mild Stress
2025
Chronic stress disrupts neuroendocrine regulation, neurotransmitter balance, and neuronal redox homeostasis, thereby contributing to the development of anxiety-related neuropathology. Arecoline, the predominant alkaloid of Areca catechu L., displays diverse neuropharmacological properties, yet its role in stress-induced emotional dysfunction has not been fully elucidated. This study examined the anxiolytic-like and neuroprotective effects of arecoline in mice exposed to chronic unpredictable mild stress (CUMS). Arecoline administration markedly improved behavioral outcomes, reflected by increased central exploration in the open-field test, prolonged time in the light compartment, and enhanced open-arm activity in the elevated plus maze. These behavioral benefits were accompanied by normalization of serum corticosterone levels, restoration of hippocampal neurotransmitters, reinforcement of antioxidant enzyme activities, and attenuation of pro-inflammatory cytokines. At the molecular level, arecoline elevated brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB), cAMP response element-binding protein (CREB), N-methyl-D-aspartate receptor (NMDAR), and Ca2+/calmodulin-dependent protein kinase II (CaMKII), indicating enhanced synaptic plasticity, while concurrently diminishing oxidative and inflammatory stress. Collectively, the findings suggest that arecoline exerts multifaceted neuroprotective actions under chronic stress by coordinating neuroendocrine modulation, neurotransmitter homeostasis, antioxidant defenses, and synaptic plasticity. This study provides new mechanistic evidence supporting the potential relevance of arecoline as a functional neuroactive compound for managing stress-induced anxiety disorders.
Journal Article
Protective Effects of Arecoline on LPS-Induced Neuroinflammation in BV2 Microglial Cells
2025
Natural alkaloids derived from edible and medicinal plants have recently gained attention as bioactive molecules capable of modulating neuroinflammatory processes. Arecoline, the major alkaloid constituent of Areca catechu L. (betel nut), is well known for its cholinergic actions, yet its direct regulatory influence on microglial immune signaling has remained uncertain. In this study, murine BV2 microglial cells were employed to investigate whether arecoline could counteract lipopolysaccharide (LPS)-induced neuroinflammatory responses. Parameters including cell viability, nitric oxide (NO) production, cytokine secretion, and gene expression were assessed, and mechanistic analyses were focused on the Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathways. Non-toxic doses of arecoline (10–40 μmol/L) markedly decreased NO accumulation and reduced the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β). Western blot analysis further showed that arecoline suppressed LPS-activated microglial signaling by down-regulating TLR4, inhibiting NF-κB p65 phosphorylation, and limiting PI3K/AKT activation. Collectively, these data reveal that arecoline exerts immunomodulatory and neuroprotective effects through dual signaling regulation in microglia and may serve as a useful pharmacological tool or structural reference for elucidating microglial inflammatory regulation and for guiding the exploration of safer bioactive compounds.
Journal Article
Research Progress in Pharmacological Effects and Mechanisms of Angelica sinensis against Cardiovascular and Cerebrovascular Diseases
by
Fan, Bei
,
Meng, Ying
,
Wang, Xizhi
in
Amino acids
,
Angelica sinensis
,
Angelica sinensis - chemistry
2024
Angelica sinensis (Oliv.) Diels (A. sinensis) is a medicinal and edible values substance, which could promote blood circulation and enrich blood. It possesses rich chemical components and nutrients, which have significant therapeutic effects on cardiovascular and cerebrovascular diseases. It is commonly used for the prevention and treatment of cardiovascular and cerebrovascular diseases in the elderly, especially in improving ischemic damage to the heart and brain, protecting vascular cells, and regulating inflammatory reactions. This article reviews the main pharmacological effects and clinical research of A. sinensis on cardiovascular and cerebrovascular diseases in recent years, explores the effect of its chemical components on cardiovascular and cerebrovascular diseases by regulating the expression of functional proteins and inhibiting inflammation, anti-apoptosis, and antioxidant mechanisms. It provides a reference for further research on A. sinensis and the development of related drugs. It provides a new reference direction for the in-depth research and application of A. sinensis in the prevention, improvement, and treatment of cardiovascular and cerebrovascular diseases.
Journal Article
Neuroprotective Effects and Mechanisms of Arecoline Against H2O2-Induced Damage in SH-SY5Y Cells
2025
An overproduction of reactive oxygen species (ROS) creates oxidative stress that disrupts neuronal activity and contributes to the pathogenesis of neurodegenerative diseases. Arecoline, the predominant alkaloid component of Areca catechu L., is known for multiple biological activities, yet its involvement in neuronal oxidative injury has not been fully clarified. This study investigated arecoline’s effect on hydrogen peroxide (H2O2)-induced toxicity in SH-SY5Y human neuroblastoma cells (SH-SY5Y). Arecoline pretreatment significantly improved cell viability and preserved plasma membrane integrity, accompanied by reduced lipid peroxidation and restoration of cellular antioxidant enzyme activities. Moreover, arecoline maintained mitochondrial membrane potential and suppressed apoptotic progression. At the molecular level, Arecoline stimulated nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) protein expression, concurrently diminishing Kelch-like ECH-associated protein 1 (Keap1) levels. In parallel, it altered the apoptosis profile by increasing B-cell lymphoma 2 (Bcl2) levels and decreasing Bcl-2-associated X protein (Bax) and total cysteine aspartate protease-3 (Caspase-3) protein expression. Collectively, the findings suggest that arecoline safeguards neurons against oxidative stress by simultaneously activating antioxidant defenses and restraining apoptosis. This study adds novel molecular evidence supporting the potential neuroprotective relevance of arecoline in oxidative stress-related neuropathology.
Journal Article
Ultrasound Treatment Enhanced Semidry-Milled Rice Flour Properties and Gluten-Free Rice Bread Quality
2022
The structural and functional properties of physical modified rice flour, including ultrasound treated rice flour (US), microwave treated rice flour (MW) and hydrothermal treated rice flour (HT) were investigated with wet-milled rice flour (WF) used as a positive control. The results showed the presence of small dents and pores on the rice flour granules of US and MW while more fragments and cracks were showed in HT. XRD and FTIR revealed that moderate ultrasonic treatment promoted the orderly arrangement of starch while hydrothermal treatment destroyed the crystalline structure of rice flour. In addition, the significant decrease of gelatinization enthalpy and the narrowing gelatinization temperature were observed in US. Compared to that of SF, adding physical modified rice flour led to a batter with higher viscoelasticity and lower tan δ. However, the batter added HT exhibited highest G′ and G″ values and lowest tan δ, which led to a harder texture of bread. Texture analysis demonstrated that physical modified rice flour (except HT) reduced the hardness, cohesion, and gumminess of rice bread. Especially, the specific volume of bread with US increased by 15.6% and the hardness decreased by 17.6%. This study suggested that ultrasound treatment of rice flour could improve texture properties and appearance of rice bread.
Journal Article
Differences in Toxicity Induced by Varying Degrees of Polymerization of Tristyrylphenol Ethoxylates in Male Mice
by
Fan, Bei
,
Wang, Fengzhong
,
Li, Chunmei
in
agricultural emulsifier #602
,
agricultural emulsifier #604
,
Biochemistry
2025
Nonylphenol ethoxylates (NPEOs) are widely utilized in pesticide formulations and industrial products but are known for their endocrine-disrupting properties. Consequently, substitutes such as tristyrylphenol ethoxylates (TSPEOs) have been introduced as inert ingredients in pesticide formulations. Here, we showed that TSPEOs exhibited subacute toxicity in male mice. For the first time, we studied the differences in subacute toxicity (28-day exposure) and the potential toxic effects of TSPEOs with varying polymerization degrees, specifically agricultural emulsifier (AE) #602 and AE #604, in male mice. We demonstrate that AE #602 can induce liver injury, as evidenced by hepatocyte swelling and vacuolar degeneration across all treated groups, along with significant hepatocellular necrosis in the high-dose group. These pathological changes were associated with alterations in oxidative stress biomarkers, including a significant decrease in malondialdehyde levels (0.57 times in the high-dose group, p < 0.05) and increased activities of glutathione peroxidase (up to 1.27 times, p < 0.05) and glutathione, suggesting a potential adaptive compensatory response. Both TSPEOs were found to cause gastric injury according to the results of organ indices and histopathological analyses. AE #604, with lower polymerization degree, caused more severe gastric injury than AE #602. Our findings indicate that NPEO substitutes should be tested for hepatotoxicity and gastrotoxicity and highlight the need for further research into the toxicity differences induced by varying degrees of polymerization of TSPEOs on human health.
Journal Article
Research on the Protective Effects and Mechanisms of Gallic Acid Against Cognitive Impairment Induced by Chronic Sleep Deprivation
2025
Background: Gallic acid (GA) is a dietary polyphenol widely found in walnuts, tea leaves, and grapes, and it is recognized for its potent antioxidant and anti-inflammatory properties. Chronic sleep deprivation (CSD) is known to disrupt redox balance, promote neuroinflammation, and impair cognition, while effective nutritional strategies to mitigate these effects remain scarce. This study was designed to evaluate the protective potential of GA against CSD-induced cognitive deficits in mice and to elucidate the underlying mechanisms. Methods: Seventy-two male ICR mice were randomly allocated to six groups, including control, CSD model, Ginkgo biloba extract, and GA at three doses (50, 100, and 200 mg/kg). After 28 days of treatment, cognitive performance was assessed using the open field test (OFT), novel object recognition (NOR), step-through passive avoidance (ST), and Morris water maze (MWM). Redox status and inflammatory mediators were determined by ELISA, while the hippocampal expression of proteins related to antioxidant defense and NF-κB signaling was analyzed by Western blotting. Results: GA supplementation improved exploratory activity, recognition memory, and spatial learning in the CSD mice. Biochemical evaluation revealed that total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity were restored, while malondialdehyde (MDA) levels, an indicator of lipid peroxidation, were reduced. These changes were accompanied by decreased circulating concentrations of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). At the molecular level, GA enhanced the expression of Nrf2, HO-1, and NQO1, while inhibiting p-p65, iNOS, and COX2 in the hippocampus. Conclusions: These findings demonstrate that GA alleviates CSD-induced cognitive deficits through the activation of the Nrf2/HO-1 antioxidant pathway and inhibition of NF-κB–mediated inflammatory responses. Thus, GA may represent a promising nutraceutical candidate for maintaining cognitive health under chronic sleep loss.
Journal Article
Relationship between Soybean Protein Isolate and Textural Properties of Texturized Vegetable Protein
2023
To identify the ideal soybean protein isolate for texturized vegetable protein processing, the effect of different soybean protein isolates on texturized vegetable protein composition was studied. Three different types of soybean protein isolates were selected and analyzed for functional properties (water holding capacity (WHC), emulsifying properties, foaming properties), amino acid content, and protein secondary structure. Then, using the same formulation, the soybean protein isolates were extruded to produce texturized vegetable protein, and its textural properties, degree of texturization, microstructure, free sulfhydryl (free SH), and disulfide (S-S) content were determined. Lastly, a correlation analysis was performed to examine the connection between soybean protein isolates and texturized vegetable proteins. After correlation analysis, the soybean protein isolate functional properties that affect the textural properties of the texturized vegetable protein were as follows: the emulsifying property affected the hardness, adhesiveness, springiness, gumminess, and chewiness of the texturized vegetable proteins; and the foaming property affected the gumminess, chewiness, and the degree of texturization of the texturized vegetable proteins. In addition, 16 amino acids including threonine (Thr), methionine (Met), and arginine (Arg) affect texturized vegetable proteins, mainly with respect to adhesiveness, springiness, and free SH. The effects of secondary structure (α-helix, random coil) on texturized vegetable proteins were degree of texturization, resilience, and cohesion, respectively. Therefore, choosing the soybean protein isolate with better emulsifying and foaming properties provides a more suitable approach for processing texturized vegetable protein.
Journal Article
Correction: Qin et al. Metabolites from the Dendrobium Endophyte Pseudomonas protegens CM-YJ44 Alleviate Insulin Resistance in HepG2 Cells via the IRS1/PI3K/Akt/GSK3β/GLUT4 Pathway. Pharmaceuticals 2025, 18, 817
2025
In the original publication [...]
Journal Article