Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
189 result(s) for "Wang, Hansong"
Sort by:
Prediction of osteoporosis and osteopenia by routine computed tomography of the lumbar spine in different regions of interest
Background We aimed to investigate the utility of Hounsfield units (HU) obtained from different regions of interest in opportunistic lumbar computed tomography (CT) to predict osteoporosis coupling with data of dual-energy X-ray absorptiometry (DXA). Methods A total of 100 patients who attended a university hospital in Shanghai, China, and had undergone CT and DXA tests of the lumbar spine within 3 months were included in this retrospective review. Images were reviewed on axial sections, and regions of interest (ROI) markers were placed on the round, oval, anterior, left, and right of the L1–L4 vertebra to measure the HU. The mean values of CT HU were then compared to the bone mineral density (BMD) measured by DXA. Receiver operator characteristic curves were generated to determine the threshold for diagnosis and its sensitivity and specificity values. Results The differences in CT HU of different ROI based on DXA definitions of osteoporosis, osteopenia, and normal individuals were statistically significant ( p  < 0.01). The HU values of the different ROI correlated well with the BMD values (Spearman coefficient all > 0.75, p  < 0.01). The threshold for diagnosing osteoporosis varies from 87 to 111 HU in different ROIs, and the threshold for excluding osteoporosis or osteopenia is 99–125 HU. Conclusion This is the first study on osteoporosis diagnosis of different ROI with routine CT lumbar scans. There is a strong correlation between CT HU of different ROI in the lumbar spine and BMD, and HU measurements can be used to predict osteoporosis.
Artificial intelligence-assisted reduction in patients’ waiting time for outpatient process: a retrospective cohort study
Background Many studies suggest that patient satisfaction is significantly negatively correlated with the waiting time. A well-designed healthcare system should not keep patients waiting too long for an appointment and consultation. However, in China, patients spend notable time waiting, and the actual time spent on diagnosis and treatment in the consulting room is comparatively less. Methods We developed an artificial intelligence (AI)-assisted module and name it XIAO YI. It could help outpatients automatically order imaging examinations or laboratory tests based on their chief complaints. Thus, outpatients could get examined or tested before they went to see the doctor. People who saw the doctor in the traditional way were allocated to the conventional group, and those who used XIAO YI were assigned to the AI-assisted group. We conducted a retrospective cohort study from August 1, 2019 to January 31, 2020. Propensity score matching was used to balance the confounding factor between the two groups. And waiting time was defined as the time from registration to preparation for laboratory tests or imaging examinations. The total cost included the registration fee, test fee, examination fee, and drug fee. We used Wilcoxon rank-sum test to compare the differences in time and cost. The statistical significance level was set at 0.05 for two sides. Results Twelve thousand and three hundred forty-two visits were recruited, consisting of 6171 visits in the conventional group and 6171 visits in the AI-assisted group. The median waiting time was 0.38 (interquartile range: 0.20, 1.33) hours for the AI-assisted group compared with 1.97 (0.76, 3.48) hours for the conventional group ( p  < 0.05). The total cost was 335.97 (interquartile range: 244.80, 437.60) CNY (Chinese Yuan) for the AI-assisted group and 364.58 (249.70, 497.76) CNY for the conventional group ( p  < 0.05). Conclusions Using XIAO YI can significantly reduce the waiting time of patients, and thus, improve the outpatient service process of hospitals.
MicroRNA and mRNA Signatures in Ischemia Reperfusion Injury in Heart Transplantation
Ischemia reperfusion (I/R) injury is an unavoidable event occurring during heart transplantation, leading to graft failures and lower long-term survival rate of the recipient. Several studies have demonstrated that microRNAs (miRNAs) are vital regulators of signalling pathways involved in I/R injury. The present study aims to quantify the altered expression levels of miRNA and mRNA upon I/R injury in a mouse heart transplantation model, and to investigate whether these miRNA can regulate genes involved in I/R injury. We performed heterotopic heart transplantation on mouse models to generate heart tissue samples with I/R and non-I/R (control). The expression levels of miRNAs as well as genes were measured in heart grafts by microarray and real time RT-PCR. miRNA alteration in cardiomyocytes exposed to hypoxia was also detected by qRT-PCR. We observed significant alterations in miRNA and gene expression profile after I/R injury. There were 39 miRNAs significantly downregulated and 20 upregulated up to 1.5 fold in heart grafts with I/R injury compared with the grafts without I/R. 48 genes were observed with 3 fold change and p<0.05 and 18 signalling pathways were enriched using Keggs pathway library. Additionally, hypoxia/reperfusion induced primary cardiomyocyte apoptosis and altered miRNA expression profiles. In conclusion, this is the first report on miRNA expression profile for heart transplantation associated with I/R injury. These findings provide us with an insight into the role of miRNA in I/R injury in heart transplantation.
Physical Extraction and Feature Fusion for Multi-Mode Signals in a Measurement System for Patients in Rehabilitation Exoskeleton
Measurement system of exoskeleton robots can reflect the state of the patient. In this study, we combined an inertial measurement unit and a visual measurement unit to obtain a repeatable fusion measurement system to compensate for the deficiencies of the single data acquisition mode used by exoskeletons. Inertial measurement unit is comprised four distributed angle sensors. Triaxial acceleration and angular velocity information were transmitted to an upper computer by Bluetooth. The data sent to the control center were processed by a Kalman filter to eliminate any noise. Visual measurement unit uses camera to acquire real time images and related data information. The two data acquisition methods were fused and have its weight. Comparisons of the fusion results with individual measurement results demonstrated that the data fusion method could effectively improve the accuracy of system. It provides a set of accurate real-time measurements for patients in rehabilitation exoskeleton and data support for effective control of exoskeleton robot.
Performance Analysis and Experimental Validation of Small-Radius Slope Steering for Mountainous Crawler Tractors
This study investigates the dynamic performance of mountainous crawler tractors during small-radius slope steering, providing theoretical support for power machinery design in hilly and mountainous regions. Addressing the mechanization demands in complex terrains and existing research gaps, a steering dynamics model is established. The model incorporates an amplitude-varied multi-peak cosine ground pressure distribution, employs position vectors and rotation matrices to characterize 3D pose variations in the tractor’s center of mass, and integrates slope angle, soil parameters, vehicle geometry, center-of-mass shift, bulldozing resistance, and sinkage resistance via d’Alembert’s principle. Numerical simulations using Maple 2024 analyzed variations in longitudinal offset of the instantaneous steering center, bilateral track traction forces, and bulldozing resistance with slope, speed, and acceleration. Variable-gradient steering tests on the “Soil-Machine-Crop” Comprehensive Experimental Platform demonstrated model accuracy, with <8% mean error and <12% maximum relative error between predicted and measured track forces. This research establishes a theoretical foundation for predicting, evaluating, and controlling the steering performance/stability of crawler tractors in complex slope conditions.
The Associations of Caesarean Delivery With Risk of Wheezing Diseases and Changes of T Cells in Children
This study aimed to assess the associations of caesarean delivery (CD) with risk of wheezing diseases and changes of immune cells in children. The cross-sectional study was conducted between May, 2020 and April, 2021. The study was conducted in Shanghai Children's Medical Center, Shanghai, China. A total of 2079 children with a mean age of 36.97 ± 40.27 months and their guardians were included in the present study face-to-face inquiry and physical examination by clinicians. Logistic regression was applied to estimate odds ratio (ORs) and 95% confidence intervals (CIs) for the association between CD and first episode of wheezing (FEW) or asthma. Models were adjusted for premature or full-term delivery, exclusive breastfeeding (at least 4 months) or not. Among the 2079 children, 987 children (47.47%) were born by CD and 1092 (52.53%) by vaginal delivery (VD). Children delivered by caesarean had significantly lower gestational age (P<0.01) compared with those who delivered vaginally. Our results also showed that CD was related to increased risk of FEW by the age of 3(adjusted OR 1.50, 95%CI 1.06, 2.12) and increased tendency to develop asthma by the age of 4 (adjusted OR 3.16, 95%CI 1.25, 9.01). The subgroup analysis revealed that the negative effects of CD on asthma were more obvious in children without exclusive breastfeeding (adjusted OR 4.93, 95%CI 1.53, 21.96) or without postnatal smoking exposure (adjusted OR 3.58, 95%CI 1.20, 13.13). Furthermore, compared with children born through VD, a significant change of the T cells (increased proportion of CD4+ T cells and decreased number and proportion of CD8+ T cells) were observed before the age of one in the CD group. However, the changes were insignificant in children over 1 year old. This study showed age-dependent associations of CD with asthma and FEW in offspring. Moreover, CD appeared to have an effect on the cellular immunity in infants, the disorder of which may contribute to the development of asthma in children.
Interaction between Red Meat Intake and NAT2 Genotype in Increasing the Risk of Colorectal Cancer in Japanese and African Americans
Heterocyclic aromatic amines formed in cooked meat may be an underlying mechanism for the red meat-colorectal cancer (CRC) association. These compounds require bioactivaction by N-acetyltransferase 2 (NAT2). An interaction effect between red meat consumption and NAT2 in increasing CRC risk has been inconsistently reported in whites. We investigated this interaction in two populations in which the high-activity rapid NAT2 phenotype is 10- and 2-fold more common than in whites. We meta-analyzed four studies of Japanese (2,217 cases, 3,788 controls) and three studies of African Americans (527 cases, 4,527 controls). NAT2 phenotype was inferred from an optimized seven-SNP genotyping panel. Processed and total red meat intakes were associated with an increased CRC risk in Japanese and in both ethnic groups combined (P's ≤ 0.002). We observed an interaction between processed meat intake and NAT2 in Japanese (P = 0.04), African Americans (P = 0.02), and in both groups combined (P = 0.006). The association of processed meat with CRC was strongest among individuals with the rapid NAT2 phenotype (combined analysis, OR for highest vs. lowest quartile: 1.62, 95% CI: 1.28-2.05; Ptrend = 8.0×10-5), intermediate among those with the intermediate NAT2 phenotype (1.29, 95% CI: 1.05-1.59; Ptrend = 0.05) and null among those with the slow phenotype (Ptrend = 0.45). A similar interaction was found for NAT2 and total red meat (Pinteraction = 0.03). Our findings support a role for NAT2 in modifying the association between red meat consumption and CRC in Japanese and African Americans.
A genome-wide association study for colorectal cancer identifies a risk locus in 14q23.1
Over 50 loci associated with colorectal cancer (CRC) have been uncovered by genome-wide association studies (GWAS). Identifying additional loci has the potential to help elucidate aspects of the underlying biological processes leading to better understanding of the pathogenesis of the disease. We re-evaluated a GWAS by excluding controls that have family history of CRC or personal history of colorectal polyps, as we hypothesized that their inclusion reduces power to detect associations. This is supported empirically and through simulations. Two-phase GWAS analysis was performed in a total of 16,517 cases and 14,487 controls. We identified rs17094983, a SNP associated with risk of CRC [ p  = 2.5 × 10 −10 ; odds ratio estimated by re-including all controls (OR) = 0.87, 95 % confidence interval (CI) 0.83–0.91; minor allele frequency (MAF) = 13 %]. Results were replicated in samples of African descent (1894 cases and 4703 controls; p  = 0.01; OR = 0.86, 95 % CI 0.77–0.97; MAF = 16 %). Gene expression data in 195 colon adenocarcinomas and 59 normal colon tissues from two different studies revealed that this locus has genotypes that are associated with RTN1 (Reticulon 1) expression ( p  = 0.001), a protein-coding gene involved in survival and proliferation of cancer cells which is highly expressed in normal colon tissues but has significantly reduced expression in tumor cells ( p  = 1.3 × 10 −8 ).
Self-reported ethnicity, genetic structure and the impact of population stratification in a multiethnic study
It is well-known that population substructure may lead to confounding in case-control association studies. Here, we examined genetic structure in a large racially and ethnically diverse sample consisting of five ethnic groups of the Multiethnic Cohort study (African Americans, Japanese Americans, Latinos, European Americans and Native Hawaiians) using 2,509 SNPs distributed across the genome. Principal component analysis on 6,213 study participants, 18 Native Americans and 11 HapMap III populations revealed four important principal components (PCs): the first two separated Asians, Europeans and Africans, and the third and fourth corresponded to Native American and Native Hawaiian (Polynesian) ancestry, respectively. Individual ethnic composition derived from self-reported parental information matched well to genetic ancestry for Japanese and European Americans. STRUCTURE-estimated individual ancestral proportions for African Americans and Latinos are consistent with previous reports. We quantified the East Asian (mean 27%), European (mean 27%) and Polynesian (mean 46%) ancestral proportions for the first time, to our knowledge, for Native Hawaiians. Simulations based on realistic settings of case-control studies nested in the Multiethnic Cohort found that the effect of population stratification was modest and readily corrected by adjusting for race/ethnicity or by adjusting for top PCs derived from all SNPs or from ancestry informative markers; the power of these approaches was similar when averaged across causal variants simulated based on allele frequencies of the 2,509 genotyped markers. The bias may be large in case-only analysis of gene by gene interactions but it can be corrected by top PCs derived from all SNPs.
Population Genetic Structure and Origins of Native Hawaiians in the Multiethnic Cohort Study
The population genetic structure of Native Hawaiians has yet to be comprehensively studied, and the ancestral origins of Polynesians remain in question. In this study, we utilized high-resolution genome-wide SNP data and mitochondrial genomes of 148 and 160 Native Hawaiians, respectively, to characterize their population structure of the nuclear and mitochondrial genomes, ancestral origins, and population expansion. Native Hawaiians, who self-reported full Native Hawaiian heritage, demonstrated 78% Native Hawaiian, 11.5% European, and 7.8% Asian ancestry with 99% belonging to the B4 mitochondrial haplogroup. The estimated proportions of Native Hawaiian ancestry for those who reported mixed ancestry (i.e. 75% and 50% Native Hawaiian heritage) were found to be consistent with their self-reported heritage. A significant proportion of Melanesian ancestry (mean = 32%) was estimated in 100% self-reported Native Hawaiians in an ADMIXTURE analysis of Asian, Melanesian, and Native Hawaiian populations of K = 2, where K denotes the number of ancestral populations. This notable proportion of Melanesian admixture supports the \"Slow-Boat\" model of migration of ancestral Polynesian populations from East Asia to the Pacific Islands. In addition, approximately 1,300 years ago a single, strong expansion of the Native Hawaiian population was estimated. By providing important insight into the underlying population structure of Native Hawaiians, this study lays the foundation for future genetic association studies of this U.S. minority population.