Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
20
result(s) for
"Wang, Ju-Qiong"
Sort by:
Disruption of the ERLIN–TM6SF2–APOB complex destabilizes APOB and contributes to non-alcoholic fatty liver disease
by
Song, Bao-Liang
,
Luo, Jie
,
Sun, Ming
in
Animals
,
Apolipoprotein B
,
Apolipoprotein B-100 - genetics
2020
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder characterized by excess lipid accumulation in the liver without significant consumption of alcohol. The transmembrane 6 superfamily member 2 (TM6SF2) E167K missense variant strongly associates with NAFLD in humans. The E167K mutation destabilizes TM6SF2, resulting in hepatic lipid accumulation and low serum lipid levels. However, the molecular mechanism by which TM6SF2 regulates lipid metabolism remains unclear. By using tandem affinity purification in combination with mass spectrometry, we found that apolipoprotein B (APOB), ER lipid raft protein (ERLIN) 1 and 2 were TM6SF2-interacting proteins. ERLINs and TM6SF2 mutually bound and stabilized each other. TM6SF2 bound and stabilized APOB via two luminal loops. ERLINs did not interact with APOB directly but still increased APOB stability through stabilizing TM6SF2. This APOB stabilization was hampered by the E167K mutation that reduced the protein expression of TM6SF2. In mice, knockout of Tm6sf2 and knockdown of Tm6sf2 or Erlins decreased hepatic APOB protein level, causing lipid accumulation in the liver and lowering lipid levels in the serum. We conclude that defective APOB stabilization, as a result of ERLINs or TM6SF2 deficiency or E167K mutation, is a key factor contributing to NAFLD.
Journal Article
POST1/C12ORF49 regulates the SREBP pathway by promoting site-1 protease maturation
by
Shi, Xiong-Jie
,
Song, Bao-Liang
,
Luo, Jie
in
activating transcription factor 6
,
Biochemistry
,
Biomedical and Life Sciences
2021
Sterol-regulatory element binding proteins (SREBPs) are the key transcriptional regulators of lipid metabolism. The activation of SREBP requires translocation of the SREBP precursor from the endoplasmic reticulum to the Golgi, where it is sequentially cleaved by site-1 protease (S1P) and site-2 protease and releases a nuclear form to modulate gene expression. To search for new genes regulating cholesterol metabolism, we perform a genome-wide CRISPR/Cas9 knockout screen and find that partner of site-1 protease (POST1), encoded by C12ORF49, is critically involved in the SREBP signaling. Ablation of POST1 decreases the generation of nuclear SREBP and reduces the expression of SREBP target genes. POST1 binds S1P, which is synthesized as an inactive protease (form A) and becomes fully mature via a two-step autocatalytic process involving forms B'/B and C'/C. POST1 promotes the generation of the functional S1P-C'/C from S1P-B'/B (canonical cleavage) and, notably, from S1P-A directly (non-canonical cleavage) as well. This POST1-mediated S1P activation is also essential for the cleavages of other S1P substrates including ATF6, CREB3 family members and the α/β-subunit precursor of N-acetylglucosamine-1-phosphotransferase. Together, we demonstrate that POST1 is a cofactor controlling S1P maturation and plays important roles in lipid homeostasis, unfolded protein response, lipoprotein metabolism and lysosome biogenesis.
Journal Article
Feeding induces cholesterol biosynthesis via the mTORC1–USP20–HMGCR axis
2020
Cholesterol is an essential lipid and its synthesis is nutritionally and energetically costly
1
,
2
. In mammals, cholesterol biosynthesis increases after feeding and is inhibited under fasting conditions
3
. However, the regulatory mechanisms of cholesterol biosynthesis at the fasting–feeding transition remain poorly understood. Here we show that the deubiquitylase ubiquitin-specific peptidase 20 (USP20) stabilizes HMG-CoA reductase (HMGCR), the rate-limiting enzyme in the cholesterol biosynthetic pathway, in the feeding state. The post-prandial increase in insulin and glucose concentration stimulates mTORC1 to phosphorylate USP20 at S132 and S134; USP20 is recruited to the HMGCR complex and antagonizes its degradation. The feeding-induced stabilization of HMGCR is abolished in mice with liver-specific
Usp20
deletion and in USP20(S132A/S134A) knock-in mice. Genetic deletion or pharmacological inhibition of USP20 markedly decreases diet-induced body weight gain, reduces lipid levels in the serum and liver, improves insulin sensitivity and increases energy expenditure. These metabolic changes are reversed by expression of the constitutively stable HMGCR(K248R). This study reveals an unexpected regulatory axis from mTORC1 to HMGCR via USP20 phosphorylation and suggests that inhibitors of USP20 could be used to lower cholesterol levels to treat metabolic diseases including hyperlipidaemia, liver steatosis, obesity and diabetes.
mTORC1 stabilizes HMG-CoA reductase, a rate-limiting enzyme in the cholesterol biosynthesis pathway, via the deubiquitylase USP20 in response to feeding.
Journal Article
Inhibition of ASGR1 decreases lipid levels by promoting cholesterol excretion
2022
High cholesterol is a major risk factor for cardiovascular disease
1
. Currently, no drug lowers cholesterol through directly promoting cholesterol excretion. Human genetic studies have identified that the loss-of-function
Asialoglycoprotein receptor 1
(
ASGR1
) variants associate with low cholesterol and a reduced risk of cardiovascular disease
2
. ASGR1 is exclusively expressed in liver and mediates internalization and lysosomal degradation of blood asialoglycoproteins
3
. The mechanism by which
ASGR1
affects cholesterol metabolism is unknown. Here, we find that
Asgr1
deficiency decreases lipid levels in serum and liver by stabilizing LXRα. LXRα upregulates ABCA1 and ABCG5/G8, which promotes cholesterol transport to high-density lipoprotein and excretion to bile and faeces
4
, respectively. ASGR1 deficiency blocks endocytosis and lysosomal degradation of glycoproteins, reduces amino-acid levels in lysosomes, and thereby inhibits mTORC1 and activates AMPK. On one hand, AMPK increases LXRα by decreasing its ubiquitin ligases BRCA1/BARD1. On the other hand, AMPK suppresses SREBP1 that controls lipogenesis. Anti-ASGR1 neutralizing antibody lowers lipid levels by increasing cholesterol excretion, and shows synergistic beneficial effects with atorvastatin or ezetimibe, two widely used hypocholesterolaemic drugs. In summary, this study demonstrates that targeting ASGR1 upregulates LXRα, ABCA1 and ABCG5/G8, inhibits SREBP1 and lipogenesis, and therefore promotes cholesterol excretion and decreases lipid levels.
Inhibiting the asialoglycoprotein receptor ASGR1 increases cholesterol excretion to the bile and then faeces, providing a unique way to lower cholesterol, and therefore providing a safe and effective way to treat cardiovascular disease.
Journal Article
Feeding induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis
2020
Cholesterol is an essential lipid and its synthesis is nutritionally and energetically costly.sup.1,2. In mammals, cholesterol biosynthesis increases after feeding and is inhibited under fasting conditions.sup.3. However, the regulatory mechanisms of cholesterol biosynthesis at the fasting-feeding transition remain poorly understood. Here we show that the deubiquitylase ubiquitin-specific peptidase 20 (USP20) stabilizes HMG-CoA reductase (HMGCR), the rate-limiting enzyme in the cholesterol biosynthetic pathway, in the feeding state. The post-prandial increase in insulin and glucose concentration stimulates mTORC1 to phosphorylate USP20 at S132 and S134; USP20 is recruited to the HMGCR complex and antagonizes its degradation. The feeding-induced stabilization of HMGCR is abolished in mice with liver-specific Usp20 deletion and in USP20(S132A/S134A) knock-in mice. Genetic deletion or pharmacological inhibition of USP20 markedly decreases diet-induced body weight gain, reduces lipid levels in the serum and liver, improves insulin sensitivity and increases energy expenditure. These metabolic changes are reversed by expression of the constitutively stable HMGCR(K248R). This study reveals an unexpected regulatory axis from mTORC1 to HMGCR via USP20 phosphorylation and suggests that inhibitors of USP20 could be used to lower cholesterol levels to treat metabolic diseases including hyperlipidaemia, liver steatosis, obesity and diabetes.
Journal Article
Feeding induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis
2020
Cholesterol is an essential lipid and its synthesis is nutritionally and energetically costly.sup.1,2. In mammals, cholesterol biosynthesis increases after feeding and is inhibited under fasting conditions.sup.3. However, the regulatory mechanisms of cholesterol biosynthesis at the fasting-feeding transition remain poorly understood. Here we show that the deubiquitylase ubiquitin-specific peptidase 20 (USP20) stabilizes HMG-CoA reductase (HMGCR), the rate-limiting enzyme in the cholesterol biosynthetic pathway, in the feeding state. The post-prandial increase in insulin and glucose concentration stimulates mTORC1 to phosphorylate USP20 at S132 and S134; USP20 is recruited to the HMGCR complex and antagonizes its degradation. The feeding-induced stabilization of HMGCR is abolished in mice with liver-specific Usp20 deletion and in USP20(S132A/S134A) knock-in mice. Genetic deletion or pharmacological inhibition of USP20 markedly decreases diet-induced body weight gain, reduces lipid levels in the serum and liver, improves insulin sensitivity and increases energy expenditure. These metabolic changes are reversed by expression of the constitutively stable HMGCR(K248R). This study reveals an unexpected regulatory axis from mTORC1 to HMGCR via USP20 phosphorylation and suggests that inhibitors of USP20 could be used to lower cholesterol levels to treat metabolic diseases including hyperlipidaemia, liver steatosis, obesity and diabetes.
Journal Article
Feeding induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis
2020
Cholesterol is an essential lipid and its synthesis is nutritionally and energetically costly.sup.1,2. In mammals, cholesterol biosynthesis increases after feeding and is inhibited under fasting conditions.sup.3. However, the regulatory mechanisms of cholesterol biosynthesis at the fasting-feeding transition remain poorly understood. Here we show that the deubiquitylase ubiquitin-specific peptidase 20 (USP20) stabilizes HMG-CoA reductase (HMGCR), the rate-limiting enzyme in the cholesterol biosynthetic pathway, in the feeding state. The post-prandial increase in insulin and glucose concentration stimulates mTORC1 to phosphorylate USP20 at S132 and S134; USP20 is recruited to the HMGCR complex and antagonizes its degradation. The feeding-induced stabilization of HMGCR is abolished in mice with liver-specific Usp20 deletion and in USP20(S132A/S134A) knock-in mice. Genetic deletion or pharmacological inhibition of USP20 markedly decreases diet-induced body weight gain, reduces lipid levels in the serum and liver, improves insulin sensitivity and increases energy expenditure. These metabolic changes are reversed by expression of the constitutively stable HMGCR(K248R). This study reveals an unexpected regulatory axis from mTORC1 to HMGCR via USP20 phosphorylation and suggests that inhibitors of USP20 could be used to lower cholesterol levels to treat metabolic diseases including hyperlipidaemia, liver steatosis, obesity and diabetes.
Journal Article
Gpnmb secreted from liver promotes lipogenesis in white adipose tissue and aggravates obesity and insulin resistance
2019
Metabolism in mammals is regulated by complex interplay among different organs. Fatty acid synthesis is increased in white adipose tissue (WAT) when it is inhibited in the liver. Here we identify glycoprotein non-metastatic melanoma protein B (Gpnmb) as one liver–WAT cross-talk factor involved in lipogenesis. Inhibition of the hepatic sterol regulatory element-binding protein pathway leads to increased transcription of Gpnmb and promotes processing of the membrane protein to a secreted form. Gpnmb stimulates lipogenesis in WAT and exacerbates diet-induced obesity and insulin resistance. In humans, Gpnmb is tightly associated with body mass index and is a strong risk factor for obesity. Gpnmb inhibition by a neutralizing antibody or liver-specific knockdown improves metabolic parameters, including weight gain reduction and increased insulin sensitivity, probably by promoting the beiging of WAT. These results suggest that Gpnmb is a liver-secreted factor regulating lipogenesis in WAT, and that Gpnmb inhibition may provide a therapeutic strategy in obesity and diabetes.
Metabolism is tightly regulated through communication among cells and organs. Here Gong and colleagues show that a liver-secreted factor, Gpnmb, promotes lipogenesis in adipose tissue and worsens metabolic dysfunctions during diet-induced obesity, whereas its inhibition reduces weight gain and insulin resistance.
Journal Article