Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
589 result(s) for "Wang, Ling-Feng"
Sort by:
Synergy between CSST galaxy survey and gravitational-wave observation: Inferring the Hubble constant from dark standard sirens
Gravitational waves (GWs) from compact binary coalescences encode the absolute luminosity distances of GW sources. Once the redshifts of GW sources are known, one can use the distance-redshift relation to constrain cosmological parameters. One way to obtain the redshifts is to localize GW sources by GW observations and then use galaxy catalogs to determine redshifts from a statistical analysis of redshift information of the potential host galaxies, commonly referred to as the dark siren method. The third-generation (3G) GW detectors are planned to work in the 2030s and will observe numerous compact binary coalescences. Using these GW events as dark sirens requires high-quality galaxy catalogs from future sky survey projects. The China Space Station Telescope (CSST) will be launched in 2024 and will observe billions of galaxies within a 17500 deg 2 survey area with redshift up to z ∼ 4, providing photometric and spectroscopic galaxy catalogs. In this work, we simulate the CSST galaxy catalogs and the 5-year GW data from the 3G GW detectors and combine them to infer the Hubble constant ( H 0 ). Our results show that the measurement precision of H 0 could reach the sub-percent level, meeting the standard of precision cosmology. We conclude that the synergy between CSST and the 3G GW detectors is of great significance in measuring the Hubble constant.
Secondary primary malignancy in patients with head and neck squamous cell carcinoma: 27-year experience from the perspective of diagnostic tools
The survival rate of head and neck squamous cell carcinoma (HNSCC) patients with secondary primary malignancy (SPM) showed no significant improvement for decades, however, the impact of advances in diagnostic tools is rarely mentioned. This study investigated the clinical characteristic of HNSCC with SPM over a 27-year period especially from the perspective of diagnostic tools. This study evaluated 157 HNSCC patients with SPM. The patients were divided into two groups according to the time of SPM diagnosis (Group A:1992-2003; Group B: 2004-2014). Age, gender, stage of first primary malignancy (FPM), SPM interval, overall survival, and disease-free survival were compared between groups. Group B had significantly more SPM developed rate (p = 0.002), more SPM patients with advanced stage of FPM (p = 0.001), synchronous SPM (p = 0.006), and shorter SPM interval (p<0.001) compared to Group A. The survival rate in Group B was not significantly better than Group A. Among patients diagnosed with HNSCC recently, more SPMs are diagnosed in a shorter time interval and in a more advanced stage. The overall advances in diagnostic tools cannot significantly improve SPM survival, however, it enables more patients to receive corresponding treatment.
Dynamic change in silent sinus syndrome
Some surgeons prefer a one-stage approach, whereas others recommend a watch-and-wait strategy because spontaneous re-expansion and atelectasis resolution can occur to some extent after the maxillary ostium is widened. 2–4 Our patient only underwent maxillary surgery, and at 6 months after the procedure, we observed the regression of enophthalmos and an increase in the maxillary sinus size. CONFLICT OF INTEREST STATEMENT All authors declare no conflict of interest. ETHICS STATEMENT Approval for retrospective data collection/secondary use of health information was obtained from the Institutional Review Board of Kaohsiung Medical University Hospital (KMUHIRB-E(I)-20230135).
Study on Tungsten Metallization and Interfacial Bonding of Silicon Nitride High-Temperature Co-Fired Ceramic Substrates
For the first time, Si3N4 HTCC has been prepared using W as the metal phase by high-temperature co-firing (1830 °C/600 KPa/2 h) as a potential substrate candidate in electronic applications. It was discovered that the addition of Si3N4 to the W paste has a significant impact on thermal expansion coefficient matching and dissolution wetting. As the Si3N4 content increased from 0 to 27.23 vol%, the adhesion strength of W increased continuously from 2.83 kgf/mm2 to 7.04 kgf/mm2. The interfacial bonding of the Si3N4 ceramic and the conduction layer was discussed. SEM analysis confirmed that the interface between Si3N4 and W exhibited an interlocking structure. TEM, HRTEM and XRD indicated the formation of W2C and W5Si3 due to the interface reactions of W with residual carbon and Si3N4, respectively, which contributed to the reactive wetting and good adhesion strength between the interface. Suitable amounts of Si3N4 powder and great interfacial bonding were the main reasons for the tough interfacial matching between the Si3N4 ceramic and the conduction layer.
Association of sudden sensorineural hearing loss with dementia: a nationwide cohort study
Background Impaired cochlear blood perfusion and microvascular damage can cause sudden sensorineural hearing loss (SSHL), which is a potential risk factor for dementia. This study explored the association between SSHL and dementia. Methods This retrospective cohort study used a random sample of 1000,000 individuals from Taiwan’s National Health Insurance Research Database. We identified 3725 patients newly diagnosed with SSHL between January 1, 2000, and December 31, 2009, and propensity score matching according to age, sex, index year, comorbidities, and medications was used to select the comparison group of 11,175 patients without SSHL. Participants were stratified by age (<65 and ≧65 years) and sex for the subgroup analyses. The outcome of interest was all cause dementia (ICD-9-CM codes 290.0, 290.4, 294.1, 331.0). Both groups were followed up until December 31, 2010, for diagnoses of dementia. Cox regression models were used to estimate the hazard ratio (HR) of dementia. Results During the average 5-year follow-up period, the incidence rate of dementia in the SSHL cohort was 6.5 per 1000 person-years compared with 5.09 per 10,000 person-years in the comparison group. After adjustment for potential confounders, patients with SSHL were 1.39 times more likely to develop dementia than those without SSHL (95% confidence interval = 1.13–1.71). When stratified by patients’ age and sex, the incidence of dementia was 1.34- and 1.64-fold higher in patients with SSHL aged ≥65 years ( P  = .013) and in women ( P  = .001), respectively, compared with the comparison group. Women with SSHL who were < 65 years old had the highest risk (2.14, 95% CI = 1.17–4.11, P  = .022). In addition, a log-rank test revealed that patients with SSHL had significantly higher cumulative incidence of dementia than those without SSHL ( P  = .002). Conclusions Patients with SSHL, especially women aged < 65 years, were associated with higher risk of dementia than those without SSHL. Thus, clinicians managing patients with SSHL should be aware of the increased risk of dementia.
Glucocorticoid receptor (NR3C1) genetic polymorphisms and the outcomes of sudden sensorineural hearing loss
BackgroundThe glucocorticoid receptor gene (NR3C1) encodes the receptor to which cortisol and other glucocorticoids bind. Steroids in either oral, intratympanic, or intravascular forms are the treatment of choice for sudden sensorineural hearing loss (SSNHL), but the outcome varies. The outcomes of SSNHL have been investigated for related factors, including age, initial hearing loss severity and pattern, vertigo, genetic variations, and the time between onset and treatment. The objective of the present study was to analyze the association of genetic polymorphisms of NR3C1 with the outcomes of SSNHL.Materials and methodsWe conducted a comparison study of 93 cases with a poor outcome (control) and 100 cases with a good outcome (case) in SSNHL patients. Six single nucleotide polymorphisms (SNPs) were selected. The genotypes were determined using TaqMan technology.ResultsThe heterozygous AT genotype of rs17100289 was associated with a poor outcome in comparison with the major homozygous AA genotype after adjustments for age and sex (OR = 0.50; 95% CI 0.26–0.95; P = 0.035) in SSNHL patients. The CT genotype of rs4912912 was also associated with a poor outcome compared with the major homozygous TT genotype after the adjustments (OR = 0.47; 95% CI 0.24–0.92; P = 0.026).ConclusionThese results suggest that NR3C1 genetic polymorphisms may influence the outcomes of SSNHL.
Direct Binding of Cisplatin to p22phox, an Endoplasmic Reticulum (ER) Membrane Protein, Contributes to Cisplatin Resistance in Oral Squamous Cell Carcinoma (OSCC) Cells
Prolonged treatment with cisplatin (CDDP) frequently develops chemoresistance. We have previously shown that p22phox, an endoplasmic reticulum (ER) membrane protein, confers CDDP resistance by blocking CDDP nuclear entry in oral squamous cell carcinoma (OSCC) cells; however, the underlying mechanism remains unresolved. Using a fluorescent dye-labeled CDDP, here we show that CDDP can bind to p22phox in both cell-based and cell-free contexts. Subsequent detection of CDDP-peptide interaction by the Tris-Tricine-based electrophoresis revealed that GA-30, a synthetic peptide matching a region of the cytosolic domain of p22phox, could interact with CDDP. These results were further confirmed by liquid chromatography–mass spectrometry (LC–MS) analysis, from which MA-11, an 11-amino acid subdomain of the GA-30 domain, could largely account for the interaction. Amino acid substitutions at Cys50, Met65 and Met73, but not His72, significantly impaired the binding between CDDP and the GA-30 domain, thereby suggesting the potential CDDP-binding residues in p22phox protein. Consistently, the p22phox point mutations at Cys50, Met65 and Met73, but not His72, resensitized OSCC cells to CDDP-induced cytotoxicity and apoptosis. Finally, p22phox might have binding specificity for the platinum drugs, including CDDP, carboplatin and oxaliplatin. Together, we have not only identified p22phox as a novel CDDP-binding protein, but further highlighted the importance of such a drug-protein interaction in drug resistance.
Forecast for cosmological parameter estimation with gravitational-wave standard sirens from the LISA-Taiji network
LISA and Taiji are expected to form a space-based gravitational-wave (GW) detection network in the future. In this work, we make a forecast for the cosmological parameter estimation with the standard siren observation from the LISA-Taiji network. We simulate the standard siren data based on a scenario with configuration angle of 40° between LISA and Taiji. Three models for the population of massive black hole binary (MBHB), i.e., pop III, Q3d, and Q3nod, are considered to predict the events of MBHB mergers. We find that, based on the LISA-Taiji network, the number of electromagnetic (EM) counterparts detected is almost doubled compared with the case of single Taiji mission. Therefore, the LISA-Taiji network’s standard siren observation could provide much tighter constraints on cosmological parameters. For example, solely using the standard sirens from the LISA-Taiji network, the constraint precision of H 0 could reach 1.3%. Moreover, combined with the CMB data, the GW-EM observation based on the LISA-Taiji network could also tightly constrain the equation of state of dark energy, e.g., the constraint precision of w reaches about 4%, which is comparable with the result of CMB+BAO+SN. It is concluded that the GW standard sirens from the LISA-Taiji network will become a useful cosmological probe in understanding the nature of dark energy in the future.
The Role of Intraoperative Neurophysiological Monitoring in Intracranial Cavernous Malformation Surgery: A Narrative Review
Cavernous malformations, also known as cavernous hemangiomas or cavernomas, are abnormal vascular lesions that can occur in various parts of the body, including intracranially. Surgical resection is often the preferred treatment for symptomatic or high-risk lesions located in eloquent or critical brain or spinal cord regions. However, cerebral cavernous malformation surgery presents unique challenges due to the risk of neurological deficits and the proximity of these lesions to vital neural structures. Intraoperative neurophysiological monitoring (IONM) plays a crucial role in enhancing surgical safety, minimizing complications, and optimizing patient outcomes. This review aimed to provide an overview of the various IONM techniques employed during cerebral cavernous malformations resection, particularly the relationship between intraoperative stimulation intensity and distance to fiber tracts or specific brain nuclei as monitored by IONM.