Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
411 result(s) for "Wang, Lujun"
Sort by:
On strata damage and stress disturbance induced by coal mining based on physical similarity simulation experiments
Extensive studies have been conducted on the movement of overlying strata when a single coal seam is mined. However, structural characteristics and associated stress field variation of the overlying strata over multiple coal seam mining remain unclear. Here we performed physical modelling experiments analogous to No. 42108 working face of Buertai coal mine, Shendong coalfield, where No. 22 coal seam (2.9 m thickness) was mined first, preceding No. 42 upper coal seam (6.1 m thickness) with an inter-coal-seam distance of 72.8 m. We employed DIC (digital image correlation) measurement and systematically-laid pressure cells to visualize the overlying strata movement and monitor stress field variations over multiple coal seam mining. We found that the stress of the inter-coal-seam strata increased significantly in the late mining stage of No. 22 coal seam due to the strata collapse, and culminated after compaction of the caved blocks. The inter-coal-seam strata stress gradually decreased over mining of No. 42 upper coal seam and arrived at zero after the inter-coal-seam strata collapsed. The mining of No. 42 upper coal seam aggravated the roof settlement of No. 22 coal seam; and the floor stress was noticeably lower than that of No. 22 coal seam due to the pressure-relief caused by the former mining activity. Our physical modelling findings advanced our understanding on structural characteristics and stress evolutions of overlying strata over multiple coal seam mining and offered guidance for prediction and mitigation of strata movement associated disasters in underground coal mining with geomechanical and mining conditions similar to those of Buertai coal mine.
Ambient noise levels of seismic stations located in urban agglomerations in central Inner Mongolia, China
Analysis of the continuous ambient noise data collected by a dense network of broadband seismic stations reveals the characteristics of ambient noise in densely populated urban areas. A study conducted in central Inner Mongolia utilized ten broadband stations to investigate two distinct repetitive and intense noise signals with predominant frequencies ranging from 1–20 Hz and 0.01–1 Hz. The ambient noise within the 0.01–20 Hz frequency range was assessed using Probability Density Function (PDF) and Power Spectral Density (PSD) approaches, and the stations were categorized according to their noise levels. The research results indicate that stations located in urban agglomerations are subject to varying degrees of noise interference, with the main sources of interference being human activities, traffic vibrations, and industrial noise. The impact of high-frequency noise on stations is inversely correlated with the distance from the noise source. Among them, four stations are affected by three noise sources. Three stations are affected by two noise sources, and three stations are affected by one noise source. Therefore, the development of urban agglomerations has brought a large number of noise sources to the stations, which greatly affects the data quality of the stations. This finding urges further investigation on the human activities, traffic vibrations, and industrial noise, and suggests that the station construction should be far away from the urban agglomeration.
PGPR: Key to Enhancing Crop Productivity and Achieving Sustainable Agriculture
Due to the burgeoning global population and the advancement of economies, coupled with human activities leading to the degradation of soil ecosystems and the depletion of non-renewable resources, concerns have arisen regarding food security and human survival. In order to address these adverse impacts, the spotlight has been cast upon plant growth-promoting rhizobacteria (PGPR), driven by a strong environmental consciousness. PGPR possesses the capability to foster plant growth and amplify crop yield through both direct and indirect mechanisms. By expediting plant growth, augmenting nutrient assimilation, heightening crop yield and caliber, and fortifying stress resilience, the application of PGPR can mitigate reliance on chemical fertilizers and pesticides while diminishing ecological perils. This exposition delves into the function of PGPR in modulating plant hormones, fostering nutrient solubilization, and fortifying plant resistance against biotic and abiotic stressors. This review offers valuable insights into the intricate interplay between PGPR and plants, elucidating uncertainties ripe for further investigation. Profound comprehension and judicious utilization of PGPR are indispensable for attaining sustainable agricultural progression, making substantial contributions to resolving the conundrums of global food security and environmental conservation.
Influence of spatial structure migration of overlying strata on water storage of underground reservoir in coal mine
Underground reservoir technology for coal mines can realize the coordinated development of coal exploitation and water protection in water-shortage-prone areas. The seepage effect of the floor seriously affects the safety of underground reservoirs under the action of mining damage and seepage pressure. Focusing on the problem of floor seepage in underground reservoirs, a spatial mechanical model of underground reservoirs was established. The main factors affecting the seepage of the surrounding rock were studied. The seepage pressure law in different stages of spatial structure evolution of overlying strata was explored. The results showed that pressure change was the main factor affecting the stability of a reservoir’s surrounding rock. The pore space between the broken and fractured rock in the water-flowing fractured zone was the main water storage space, which was directly related to the development of a breaking arch. According to the spatial structure evolution process of the overlying strata, the water storage state of an underground reservoir was divided into two stages and three situations. The seepage pressure was mainly affected by the water pressure and the overlying strata weight. The water pressure was affected by the reservoir head height, and the overlying strata weight was mainly affected by the overlying strata thickness.
Particle Filter-Guided Online Neural Networks for Multi-Target Bearing-Only Tracking in Passive Sonar Systems
This study proposes a novel method to address the instability issues in multi-target bearing-only tracking for passive sonar systems. Utilizing a particle filter-guided on-site training mechanism, the complex multi-classification task is simplified into binary classification (target vs. non-target) by assigning an independent tracker to each target. This enables simultaneous on-site training and deployment of the neural network for tracking. A hybrid CNN-BiLSTM network is constructed: the Convolutional Neural Network (CNN) enhances target feature extraction and non-target discrimination, while the Bidirectional Long Short-Term Memory (BiLSTM) models spatiotemporal dependencies. Their synergy improves trajectory continuity and smoothness. Under simulated conditions, the proposed method reduces the minimum required SNR for stable tracking to −31.78 dB, a significant improvement over the −29.69 dB required by pure particle filtering methods. The average tracking error is also reduced from 0.61° to 0.34°. Both simulations and sea trial data demonstrate that the method maintains stable tracking even during target trajectory crossings, significantly enhancing multi-target tracking accuracy in complex underwater acoustic environments.
Detection of Impedance Inhomogeneity in Lithium-Ion Battery Packs Based on Local Outlier Factor
The inhomogeneity between cells is the main cause of failure and thermal runaway in Lithium-ion battery packs. Electrochemical Impedance Spectroscopy (EIS) is a non-destructive testing technique that can map the complex reaction processes inside the battery. It can detect and characterise battery anomalies and inconsistencies. This study proposes a method for detecting impedance inconsistencies in Lithium-ion batteries. The method involves conducting a battery EIS test and Distribution of Relaxation Times (DRT) analysis to extract characteristic frequency points in the full frequency band. These points are less affected by the State of Charge (SOC) and have a strong correlation with temperature, charge/discharge rate, and cycles. An anomaly detection characteristic impedance frequency of 136.2644 Hz was determined for a cell in a Lithium-ion battery pack. Single-frequency point impedance acquisition solves the problem of lengthy measurements and identification of anomalies throughout the frequency band. The experiment demonstrates a significant reduction in impedance measurement time, from 1.05 h to just 54 s. The LOF was used to identify anomalies in the EIS data at this characteristic frequency. The detection results were consistent with the actual conditions of the battery pack in the laboratory, which verifies the feasibility of this detection method. The LOF algorithm was chosen due to its superior performance in terms of FAR (False Alarm Rate), MAR (Missing Alarm Rate), and its fast anomaly identification time of only 0.1518 ms. The method does not involve complex mathematical models or parameter identification. This helps to achieve efficient anomaly identification and timely warning of single cells in the battery pack.
Hybrid Model Predictive Control Strategy of Supercapacitor Energy Storage System Based on Double Active Bridge
In order to solve the problem of which the dynamic response of a supercapacitor (SC) is limited due to the mismatch dynamic characteristics between the DC/DC converter and supercapacitor in an energy storage system, this paper proposes a hybrid model predictive control strategy based on a dual active bridge (DAB). The hybrid model predictive control model considers the supercapacitor and DAB in a unified way, including the equivalent series resistance and capacitance parameters of the SC. The method can obtain a large charging and discharging current of the SC, thereby not only improving the overall response speed of the system, but also expanding the actual capacity utilization range of the SC. The simulation results show that compared with the model prediction method of the dual active bridge converter, the proposed control method can effectively improve the overall response speed of the system, which can be improved by at least 0.4 ms. In addition, the proposed method increases the actual upper limit of the SC voltage, reduces the actual lower limit of the SC voltage, and then expands the actual capacity utilization range of the SC by 18.63%. The proposed method has good application prospects in improving the dynamic response performance of energy storage systems.
A model on assessing effects of gas diffusion in multifield coupled process for unsaturated soils
Gas diffusion is an important process in thermo-hydro-mechanical coupled problems of unsaturated soils, e.g., nuclear waste repositories or heated pipeline engineering, which usually strongly affects process of liquid water evaporation and water vapor condensation, migration of air and water, heat transfer, and skeleton deformation. This paper develops a simple model to assess the effects of gas diffusion on multifield coupled process of unsaturated soils, providing predicting guidance and uniform judgment rather than establishing a numerical coupled model by the traditional methods. A dimensionless characteristic number is first proposed and expressed by sediment properties and environmental conditions. Rationality of this characteristic number is then assessed and validated by numerical results, and studies indicated that the gas diffusion is crucial when the characteristic number exceeds a critical one, which is reflected in early valleys of gas/liquid pressure and effective stresses/strains induced by vapor condensation and the final maximum values. It can be found from the expression that this characteristic number is highly relevant to diffusion coefficient, permeability, temperature, initial saturation, and gas pressure. Parametric studies indicate that gas diffusion appears to be critical for unsaturated clayey soils, provided that the diffusion coefficient is larger than 10–7 m2/s and permeability smaller than 10–14 m2. The effect can be neglected for soils with diffusion coefficient lower than 10–9 m2/s or permeability greater than 10–14 m2.
Plastome phylogenomics provide new perspective into the phylogeny and evolution of Betulaceae (Fagales)
Background Betulaceae is a relatively small but morphologically diverse family, with many species having important economic and ecological values. Although plastome structure of Betulaceae has been reported sporadically, a comprehensive exploration for plastome evolution is still lacking. Besides, previous phylogenies had been constructed based on limited gene fragments, generating unrobust phylogenetic framework and hindering further studies on divergence ages, biogeography and character evolution. Here, 109 plastomes (sixteen newly assembled and 93 previously published) were subject to comparative genomic and phylogenomic analyses to reconstruct a robust phylogeny and trace the diversification history of Betulaceae. Results All Betulaceae plastomes were highly conserved in genome size, gene order, and structure, although specific variations such as gene loss and IR boundary shifts were revealed. Ten divergent hotspots, including five coding regions ( P i  > 0.02) and five noncoding regions ( P i  > 0.035), were identified as candidate DNA barcodes for phylogenetic analysis and species delimitation. Phylogenomic analyses yielded high-resolution topology that supported reciprocal monophyly between Betula and Alnus within Betuloideae, and successive divergence of Corylus , Ostryopsis , and Carpinus - Ostrya within Coryloideae. Incomplete lineage sorting and hybridization may be responsible for the mutual paraphyly between Ostrya and Carpinus . Betulaceae ancestors originated from East Asia during the upper Cretaceous; dispersals and subsequent vicariance accompanied by historical environment changes contributed to its diversification and intercontinental disjunction. Ancestral state reconstruction indicated the acquisition of many taxonomic characters was actually the results of parallel or reversal evolution. Conclusions Our research represents the most comprehensive taxon-sampled and plastome-level phylogenetic inference for Betulaceae to date. The results clearly document global patterns of plastome structural evolution, and established a well-supported phylogeny of Betulaceae. The robust phylogenetic framework not only provides new insights into the intergeneric relationships, but also contributes to a perspective on the diversification history and evolution of the family.
Experimental Study on Shear Characteristics of Coal Samples in Different Water-Bearing States
During the establishment of the coal mine goaf reservoir, the strength of the coal pillar dam was weakened by various water–rock interactions triggered by water movement. To explore the influence of the water-bearing state on the shear characteristics of coal pillar dams, the 2–2 coal seam of Shangwan Coal Mine in the Shendong Mining area was taken as the research object and was prepared to coal samples with different moisture contents and different drying-saturation cycles, and the variable angle shear test of coal samples was carried out. The law of water absorption of coal samples under natural and pressurized conditions is obtained. The research results show that the shear characteristics of coal samples change significantly under the action of water, with the increase of moisture content and drying-saturation cycles, the lower the shear strength of coal samples is, the larger the peak shear strain is, and the cohesion and internal friction angle of coal samples decrease linearly. According to the relationship between cohesion, internal friction angle, moisture content, and drying-saturation cycle times, the Mohr–Coulomb model of coal samples considering moisture content and immersion times is established, which contributes to the load-bearing capacity estimation of water-bearing coal mass. Additionally, scanning electron microscope analysis revealed significant changes in the microstructure of coal samples under different moisture states: as the moisture content and dry-saturation cycles increase, the microstructure of the coal samples gradually transforms from orderly and compact to disordered and murky, elucidating the mechanism by which moisture weakens the mechanical properties of the coal samples. The research results provide a useful reference for engineering problems related to the stability evaluation of coal bodies involving the repeated erosion effect of water.