Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
5,584 result(s) for "Wang, Maria"
Sort by:
Carbon cycling in mature and regrowth forests globally
Forests are major components of the global carbon (C) cycle and thereby strongly influence atmospheric carbon dioxide (CO 2 ) and climate. However, efforts to incorporate forests into climate models and CO 2 accounting frameworks have been constrained by a lack of accessible, global-scale synthesis on how C cycling varies across forest types and stand ages. Here, we draw from the Global Forest Carbon Database, ForC, to provide a macroscopic overview of C cycling in the world’s forests, giving special attention to stand age-related variation. Specifically, we use 11 923 ForC records for 34 C cycle variables from 865 geographic locations to characterize ensemble C budgets for four broad forest types—tropical broadleaf evergreen, temperate broadleaf, temperate conifer, and boreal. We calculate means and standard deviations for both mature and regrowth (age < 100 years) forests and quantify trends with stand age in regrowth forests for all variables with sufficient data. C cycling rates generally decreased from tropical to temperate to boreal in both mature and regrowth forests, whereas C stocks showed less directional variation. Mature forest net ecosystem production did not differ significantly among biomes. The majority of flux variables, together with most live biomass pools, increased significantly with the logarithm of stand age. As climate change accelerates, understanding and managing the carbon dynamics of forests is critical to forecasting, mitigation, and adaptation. This comprehensive and synthetic global overview of C stocks and fluxes across biomes and stand ages contributes to these efforts.
ForC
Forests play an influential role in the global carbon (C) cycle, storing roughly half of terrestrial C and annually exchanging with the atmosphere more than five times the carbon dioxide (CO2) emitted by anthropogenic activities. Yet, scaling up from field-based measurements of forest C stocks and fluxes to understand global scale C cycling and its climate sensitivity remains an important challenge. Tens of thousands of forest C measurements have been made, but these data have yet to be integrated into a single database that makes them accessible for integrated analyses. Here we present an open-access global Forest Carbon database (ForC) containing previously published records of field-based measurements of ecosystem-level C stocks and annual fluxes, along with disturbance history and methodological information. ForC expands upon the previously published tropical portion of this database, TropForC (https://doi.org/10.5061/dryad.t516f), now including 17,367 records (previously 3,568) representing 2,731 plots (previously 845) in 826 geographically distinct areas. The database covers all forested biogeographic and climate zones, represents forest stands of all ages, and currently includes data collected between 1934 and 2015. We expect that ForC will prove useful for macroecological analyses of forest C cycling, for evaluation of model predictions or remote sensing products, for quantifying the contribution of forests to the global C cycle, and for supporting international efforts to inventory forest carbon and greenhouse gas exchange. A dynamic version of ForC is maintained at on GitHub (https://GitHub.com/forc-db), and we encourage the research community to collaborate in updating, correcting, expanding, and utilizing this database. ForC is an open access database, and we encourage use of the data for scientific research and education purposes. Data may not be used for commercial purposes without written permission of the database PI. Any publications using ForC data should cite this publication and Anderson-Teixeira et al. (2016a) (see Metadata S1). No other copyright or cost restrictions are associated with the use of this data set.
Rubber's inclusion in zero‐deforestation legislation is necessary but not sufficient to reduce impacts on biodiversity
Agricultural commodity production is a major driver of tropical deforestation and biodiversity loss. Natural rubber from Hevea brasiliensis , a valuable commodity without viable substitutes, has recently been included in the European Union (EU) deforestation regulation that aims to halt imports of goods containing embedded deforestation. Sustained growth in demand for rubber is driven by increasing tire production, caused by rising transport flows and personal car ownership. We show that average natural rubber yields remain static, meaning 2.7–5.3 million ha of additional plantations could be needed by 2030 to meet demand. A systematic literature search identified 106 case studies concerning transitions to and from rubber, revealing that substantial rubber plantation area expansion since 2010 has occurred at the expense of natural forest. Eliminating deforestation from rubber supply chains requires support for millions of smallholder growers to maintain or increase production from existing plantations, without land or water degradation. Supply chain traceability efforts offer opportunities to deliver such support. While the inclusion of rubber in EU legislation is a positive step, it is critical to ensure that smallholders are not marginalized to avoid exacerbating poverty, and that other markets follow suit to avoid displacement of rubber‐driven deforestation to unregulated markets.
Structure of the human Cereblon–DDB1–lenalidomide complex reveals basis for responsiveness to thalidomide analogs
The protein Cereblon, part of an ubiquitin E3 ligase complex, is the target for anticancer thalidomide analogs. The crystal structure of human Cereblon-DDB1 with bound lenalidomide reveals how the drug affects E3 substrate recruitment. The Cul4–Rbx1–DDB1–Cereblon E3 ubiquitin ligase complex is the target of thalidomide, lenalidomide and pomalidomide, therapeutically important drugs for multiple myeloma and other B-cell malignancies. These drugs directly bind Cereblon (CRBN) and promote the recruitment of substrates Ikaros (IKZF1) and Aiolos (IKZF3) to the E3 complex, thus leading to substrate ubiquitination and degradation. Here we present the crystal structure of human CRBN bound to DDB1 and the drug lenalidomide. A hydrophobic pocket in the thalidomide-binding domain (TBD) of CRBN accommodates the glutarimide moiety of lenalidomide, whereas the isoindolinone ring is exposed to solvent. We also solved the structures of the mouse TBD in the apo state and with thalidomide or pomalidomide. Site-directed mutagenesis in lentiviral-expression myeloma models showed that key drug-binding residues are critical for antiproliferative effects.
Aboveground forest biomass varies across continents, ecological zones and successional stages: refined IPCC default values for tropical and subtropical forests
For monitoring and reporting forest carbon stocks and fluxes, many countries in the tropics and subtropics rely on default values of forest aboveground biomass (AGB) from the Intergovernmental Panel on Climate Change (IPCC) guidelines for National Greenhouse Gas (GHG) Inventories. Default IPCC forest AGB values originated from 2006, and are relatively crude estimates of average values per continent and ecological zone. The 2006 default values were based on limited plot data available at the time, methods for their derivation were not fully clear, and no distinction between successional stages was made. As part of the 2019 Refinement to the 2006 IPCC Guidelines for GHG Inventories, we updated the default AGB values for tropical and subtropical forests based on AGB data from >25 000 plots in natural forests and a global AGB map where no plot data were available. We calculated refined AGB default values per continent, ecological zone, and successional stage, and provided a measure of uncertainty. AGB in tropical and subtropical forests varies by an order of magnitude across continents, ecological zones, and successional stage. Our refined default values generally reflect the climatic gradients in the tropics, with more AGB in wetter areas. AGB is generally higher in old-growth than in secondary forests, and higher in older secondary (regrowth >20 years old and degraded/logged forests) than in young secondary forests (⩽20 years old). While refined default values for tropical old-growth forest are largely similar to the previous 2006 default values, the new default values are 4.0–7.7-fold lower for young secondary forests. Thus, the refined values will strongly alter estimated carbon stocks and fluxes, and emphasize the critical importance of old-growth forest conservation. We provide a reproducible approach to facilitate future refinements and encourage targeted efforts to establish permanent plots in areas with data gaps.
Origin and diversity of an underutilized fruit tree crop, cempedak (Artocarpus integer, Moraceae)
Premise of the Study Underutilized crops and their wild relatives are important resources for crop improvement and food security. Cempedak [Artocarpus integer (Thunb). Merr.] is a significant crop in Malaysia but underutilized elsewhere. Here we performed molecular characterization of cempedak and its putative wild relative bangkong (Artocarpus integer (Thunb). Merr. var. silvestris Corner) to address questions regarding the origin and diversity of cempedak. Methods Using data from 12 microsatellite loci, we assessed the genetic diversity and genetic/geographic structure for 353 cempedak and 175 bangkong accessions from Malaysia and neighboring countries and employed clonal analysis to characterize cempedak cultivars. We conducted haplotype network analyses on the trnH‐psbA region in a subset of these samples. We also analyzed key vegetative characters that reportedly differentiate cempedak and bangkong. Key Results We show that cempedak and bangkong are sister taxa and distinct genetically and morphologically, but the directionality of domestication origin is unclear. Genetic diversity was generally higher in bangkong than in cempedak. We found a distinct genetic cluster for cempedak from Borneo as compared to cempedak from Peninsular Malaysia. Finally, cempedak cultivars with the same names did not always share the same genetic fingerprint. Conclusions Cempedak origins are complex, with likely admixture and hybridization with bangkong, warranting further investigation. We provide a baseline of genetic diversity of cempedak and bangkong in Malaysia and found that germplasm collections in Malaysia represent diverse coverage of the four cempedak genetic clusters detected.
Constrained Realism: Representing Social Facts in George Gissing's Fiction
By reading Gissing's fiction as an attempt to translate the constraining social facts of urban life into realist narrative practice, this essay clarifies his place within the history of the novel: as a later realist writer whose narrative mode adopts a Durkheimian realism.1 More broadly, reading Gissing's narrative form alongside and against Durkheim's concept of the social fact shifts us away from considering his novels as primarily documents of fin de siècle social history, whether indexing the changing publishing landscape of the period, in New Grub Street (1891), or annotating debates over gender, in the case of The Odd Women (1893).2 As valuable and insightful as such accounts are, they overlook the longer histories in which Gissing's work partakes, both as a contribution to realism and as part of the longer process of knowledge reorganization that led to our modern understanding of the fact. By reading both of these novels, I will show how Gissing's narrators espouse a \"constrained omniscience\" that performs and points to their characters' social and material limitations, a strategy that aligns with Durkheim's notion of the social fact. [...]it is to be noted that a very similar effect can be produced by the converse method of suppression and exclusion; for if nothing is added but something is simply ignored or left out, the expression of what remains is as much altered as it can be by deliberate accentuation. Gissing's solution is to experiment with a mode of narration that emphasizes the description of observable phenomena, especially in the presentation of character, in order to enact an external, social perspective and an internal, subjective experience.
Controlled sink mobility for prolonging wireless sensor networks lifetime
This paper demonstrates the advantages of using controlled mobility in wireless sensor networks (WSNs) for increasing their lifetime, i.e., the period of time the network is able to provide its intended functionalities. More specifically, for WSNs that comprise a large number of statically placed sensor nodes transmitting data to a collection point (the sink), we show that by controlling the sink movements we can obtain remarkable lifetime improvements. In order to determine sink movements, we first define a Mixed Integer Linear Programming (MILP) analytical model whose solution determines those sink routes that maximize network lifetime. Our contribution expands further by defining the first heuristics for controlled sink movements that are fully distributed and localized. Our Greedy Maximum Residual Energy (GMRE) heuristic moves the sink from its current location to a new site as if drawn toward the area where nodes have the highest residual energy. We also introduce a simple distributed mobility scheme ( Random Movement or RM) according to which the sink moves uncontrolled and randomly throughout the network. The different mobility schemes are compared through extensive ns2-based simulations in networks with different nodes deployment, data routing protocols, and constraints on the sink movements. In all considered scenarios, we observe that moving the sink always increases network lifetime. In particular, our experiments show that controlling the mobility of the sink leads to remarkable improvements, which are as high as sixfold compared to having the sink statically (and optimally) placed, and as high as twofold compared to uncontrolled mobility.
Molecular Determinants of the Response of Glioblastomas to EGFR Kinase Inhibitors
A small proportion of glioblastomas respond to gefitinib or erlotinib (tyrosine kinase inhibitors). Some of these responsive tumors have a mutant variant of the epidermal growth factor receptor (EGFR), and some unresponsive tumors lack PTEN, a regulator of the pathway that a mutant EGFR activates. The simultaneous presence in glioblastoma cells of mutant EGFR and PTEN was associated with responsiveness to tyrosine kinase inhibitors. The simultaneous presence in glioblastoma cells of mutant EGFR and PTEN was associated with responsiveness to tyrosine kinase inhibitors. Tyrosine kinases are key regulators of intracellular signaling. 1 , 2 Overexpressed or mutated tyrosine kinases occur in many types of cancer and contribute to the development and progression of tumors. 3 – 5 The dependence of tumor cells on persistently activated tyrosine kinases may render tumors susceptible to inhibitors of these kinases. 3 – 7 The epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, is a target for such inhibitors because it is amplified, mutated, or both in a number of neoplasms. 8 A small subgroup of patients with lung cancer have a response to EGFR inhibitors, 9 – 11 and mutations in the EGFR kinase domain . . .