Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
215 result(s) for "Wang, Y. Morris"
Sort by:
Microscale residual stresses in additively manufactured stainless steel
Additively manufactured (AM) metallic materials commonly possess substantial microscale internal stresses that manifest as intergranular and intragranular residual stresses. However, the impact of these residual stresses on the mechanical behaviour of AM materials remains unexplored. Here we combine in situ synchrotron X-ray diffraction experiments and computational modelling to quantify the lattice strains in different families of grains with specific orientations and associated intergranular residual stresses in an AM 316L stainless steel under uniaxial tension. We measure pronounced tension–compression asymmetries in yield strength and work hardening for as-printed stainless steel, and show they are associated with back stresses originating from heterogeneous dislocation distributions and resultant intragranular residual stresses. We further report that heat treatment relieves microscale residual stresses, thereby reducing the tension–compression asymmetries and altering work-hardening behaviour. This work establishes the mechanistic connections between the microscale residual stresses and mechanical behaviour of AM stainless steel. The impact of grain-scale residual stresses on the mechanical behaviour of 3D-printed metals and alloys remains unexplored. Here, the authors combine in situ synchrotron X-ray diffraction and computer simulations to link residual stresses in steel to its tensile behaviour.
Two-dimensional quantum-sheet films with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance
Dense, thick, but fast-ion-conductive electrodes are critical yet challenging components of ultrafast electrochemical capacitors with high volumetric power/energy densities1–4. Here we report an exfoliation–fragmentation–restacking strategy towards thickness-adjustable (1.5‒24.0 μm) dense electrode films of restacked two-dimensional 1T-MoS2 quantum sheets. These films bear the unique architecture of an exceptionally high density of narrow (sub-1.2 nm) and ultrashort (~6.1 nm) hydrophobic nanochannels for confinement ion transport. Among them, 14-μm-thick films tested at 2,000 mV s−1 can deliver not only a high areal capacitance of 0.63 F cm−2 but also a volumetric capacitance of 437 F cm−3 that is one order of magnitude higher than that of other electrodes. Density functional theory and ab initio molecular dynamics simulations suggest that both hydration and nanoscale channels play crucial roles in enabling ultrafast ion transport and enhanced charge storage. This work provides a versatile strategy for generating rapid ion transport channels in thick but dense films for energy storage and filtration applications.Dense, short hydrophobic nanochannels have been restacked from two-dimensional quantum sheets to achieve both high areal and volumetric capacitance in thick electrodes under ultrahigh rates.
High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction
Bimetallic platinum-nickel (Pt-Ni) nanostructures represent an emerging class of electrocatalysts for oxygen reduction reaction (ORR) in fuel cells, but practical applications have been limited by catalytic activity and durability. We surface-doped Pt3Ni octahedra supported on carbon with transition metals, termed M-Pt3Ni/C, where M is vanadium, chromium, manganese, iron, cobalt, molybdenum (Mo), tungsten, or rhenium. The Mo-Pt3Ni/C showed the best ORR performance, with a specific activity of 10.3 mAčm2 and mass activity of 6.98 A—gPt, which are 81- and 73-fold enhancements compared with the commercial Pt/C catalyst (0.127 mAčm2 and 0.096 A/mgPt). Theoretical calculations suggest that Mo prefers subsurface positions near the particle edges in vacuum and surface vertexédge sites in oxidizing conditions, where it enhances both the performance and the stability of the Pt3Ni catalyst.
Visualization and validation of twin nucleation and early-stage growth in magnesium
The abrupt occurrence of twinning when Mg is deformed leads to a highly anisotropic response, making it too unreliable for structural use and too unpredictable for observation. Here, we describe an in-situ transmission electron microscopy experiment on Mg crystals with strategically designed geometries for visualization of a long-proposed but unverified twinning mechanism. Combining with atomistic simulations and topological analysis, we conclude that twin nucleation occurs through a pure-shuffle mechanism that requires prismatic-basal transformations. Also, we verified a crystal geometry dependent twin growth mechanism, that is the early-stage growth associated with instability of plasticity flow, which can be dominated either by slower movement of prismatic-basal boundary steps, or by faster glide-shuffle along the twinning plane. The fundamental understanding of twinning provides a pathway to understand deformation from a scientific standpoint and the microstructure design principles to engineer metals with enhanced behavior from a technological standpoint. The origins of deformation twins in Mg have remained unclear in the past. Here the authors, by combining in situ experimental observations and atomistic simulations, capture the rapid twinning phenomena in Mg crystals and show that twinning occurs through pure atomic shuffle.
Ideal maximum strengths and defect-induced softening in nanocrystalline-nanotwinned metals
Strengthening of metals through nanoscale grain boundaries and coherent twin boundaries is manifested by a maximum strength—a phenomenon known as Hall–Petch breakdown. Different softening mechanisms are considered to occur for nanocrystalline and nanotwinned materials. Here, we report nanocrystalline-nanotwinned Ag materials that exhibit two strength transitions dissimilar from the above mechanisms. Atomistic simulations show three distinct strength regions as twin spacing decreases, delineated by positive Hall–Petch strengthening to grain-boundary-dictated (near-zero Hall–Petch slope) mechanisms and to softening (negative Hall–Petch slope) induced by twin-boundary defects. An ideal maximum strength is reached for a range of twin spacings below 7 nm. We synthesized nanocrystalline-nanotwinned Ag with hardness 3.05 GPa—42% higher than the current record, by segregating trace concentrations of Cu impurity (<1.0 weight (wt)%). The microalloy retains excellent electrical conductivity and remains stable up to 653 K; 215 K better than for pure nanotwinned Ag. This breaks the existing trade-off between strength and electrical conductivity, and demonstrates the potential for creating interface-dominated materials with unprecedented mechanical and physical properties.
Critical role of slags in pitting corrosion of additively manufactured stainless steel in simulated seawater
Pitting corrosion in seawater is one of the most difficult forms of corrosion to identify and control. A workhorse material for marine applications, 316L stainless steel (316L SS) is known to balance resistance to pitting with good mechanical properties. The advent of additive manufacturing (AM), particularly laser powder bed fusion (LPBF), has prompted numerous microstructural and mechanical investigations of LPBF 316L SS; however, the origins of pitting corrosion on as-built surfaces is unknown, despite their utmost importance for certification of LPBF 316L SS prior to fielding. Here, we show that Mn-rich silicate slags are responsible for pitting of the as-built LPBF material in sodium chloride due to their introduction of deleterious defects such as cracks or surface oxide heterogeneities. In addition, we explain how slags are formed in the liquid metal and deposited at the as-built surfaces using high-fidelity melt pool simulations. Our work uncovers how LPBF changes surface oxides due to rapid solidification and high-temperature oxidation, leading to fundamentally different pitting corrosion mechanisms. Mechanisms occurring during seawater corrosion of as-built laser powder bed fusion 316L stainless steels are largely unknown. Here, the authors show that Mn, Si-rich slags found in between laser tracks are responsible for corrosion.
A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites
Nanograined metals have the merit of high strength, but usually suffer from low work hardening capacity and poor thermal stability, causing premature failure and limiting their practical utilities. Here we report a “nanodispersion-in-nanograins” strategy to simultaneously strengthen and stabilize nanocrystalline metals such as copper and nickel. Our strategy relies on a uniform dispersion of extremely fine sized carbon nanoparticles (2.6 ± 1.2 nm) inside nanograins. The intragranular dispersion of nanoparticles not only elevates the strength of already-strong nanograins by 35%, but also activates multiple hardening mechanisms via dislocation-nanoparticle interactions, leading to improved work hardening and large tensile ductility. In addition, these finely dispersed nanoparticles result in substantially enhanced thermal stability and electrical conductivity in metal nanocomposites. Our results demonstrate the concurrent improvement of several mutually exclusive properties in metals including strength-ductility, strength-thermal stability, and strength-electrical conductivity, and thus represent a promising route to engineering high-performance nanostructured materials. High-strength nanocrystalline materials come at the expense of tensile ductility, thermal stability, and electrical conductivity. Here the authors report a nanodispersion-in-nanograins strategy where ultra-nano-carbon was used to concurrently achieve above four mutually exclusive properties.
Defective twin boundaries in nanotwinned metals
Coherent twin boundaries, which usually form during the growth, deformation or annealing of crystalline solids, are widely described as perfect interfaces. Experiments and simulations now show that as-grown coherent twin boundaries in nanotwinned copper consist of incoherent segments and partial dislocations, and significantly affect the material’s mechanical behaviour and deformation mechanisms. Coherent twin boundaries (CTBs) are widely described, both theoretically and experimentally, as perfect interfaces that play a significant role in a variety of materials. Although the ability of CTBs in strengthening, maintaining the ductility and minimizing the electron scattering is well documented 1 , 2 , 3 , most of our understanding of the origin of these properties relies on perfect-interface assumptions. Here we report experiments and simulations demonstrating that as-grown CTBs in nanotwinned copper are inherently defective with kink-like steps and curvature, and that these imperfections consist of incoherent segments and partial dislocations. We further show that these defects play a crucial role in the deformation mechanisms and mechanical behaviour of nanotwinned copper. Our findings offer a view of the structure of CTBs that is largely different from that in the literature 2 , 4 , 5 , and underscore the significance of imperfections in nanotwin-strengthened materials.
Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes
Short carbon nanotubes spontaneously insert into lipid bilayers and live cell membranes to form channels with useful and tunable transport properties that make them a promising biomimetic nanopore platform for developing cell interfaces, studying nanofluidic transport in biological channels, and creating stochastic sensors. Carbon-nanotube porins (Noy MH) Synthetic analogues of biological membrane channels that match the latter's high efficiency and exquisite selectivity for transporting ions and molecules could find many applications. Although it is possible to produce nanopores of a size comparable to that of protein channels, replicating their affinity and transport properties remains challenging. Jia Geng et al . now show that short (10-nm-long) single-wall carbon nanotubes spontaneously insert into lipid bilayers and live cell membranes to form channels with useful and tuneable transport properties. These carbon-nanotube channel-forming molecules or porins offer a promising biomimetic nanopore platform for developing cell interfaces, studying transport in biological channels, and creating stochastic sensors. There is much interest in developing synthetic analogues of biological membrane channels 1 with high efficiency and exquisite selectivity for transporting ions and molecules. Bottom-up 2 and top-down 3 methods can produce nanopores of a size comparable to that of endogenous protein channels, but replicating their affinity and transport properties remains challenging. In principle, carbon nanotubes (CNTs) should be an ideal membrane channel platform: they exhibit excellent transport properties 4 , 5 , 6 , 7 , 8 and their narrow hydrophobic inner pores mimic structural motifs typical of biological channels 1 . Moreover, simulations predict that CNTs with a length comparable to the thickness of a lipid bilayer membrane can self-insert into the membrane 9 , 10 . Functionalized CNTs have indeed been found to penetrate lipid membranes and cell walls 11 , 12 , and short tubes have been forced into membranes to create sensors 13 , yet membrane transport applications of short CNTs remain underexplored. Here we show that short CNTs spontaneously insert into lipid bilayers and live cell membranes to form channels that exhibit a unitary conductance of 70–100 picosiemens under physiological conditions. Despite their structural simplicity, these ‘CNT porins’ transport water, protons, small ions and DNA, stochastically switch between metastable conductance substates, and display characteristic macromolecule-induced ionic current blockades. We also show that local channel and membrane charges can control the conductance and ion selectivity of the CNT porins, thereby establishing these nanopores as a promising biomimetic platform for developing cell interfaces, studying transport in biological channels, and creating stochastic sensors.