Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
22 result(s) for "Wang, Yinyuan"
Sort by:
Tagitinin C induces ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal cancer cells
Colorectal cancer (CRC) is a common malignant tumor of the digestive system. However, the efficacy of surgery and chemotherapy is limited. Ferroptosis is an iron- and reactive oxygen species (ROS)-dependent form of regulated cell death (RCD) and plays a vital role in tumor suppression. Ferroptosis inducing agents have been studied extensively as a novel promising way to fight against therapy resistant cancers. The aim of this study is to investigate the mechanism of action of tagitinin C (TC), a natural product, as a novel ferroptosis inducer in tumor suppression. The response of CRC cells to tagitinin C was assessed by cell viability assay, clonogenic assay, transwell migration assay, cell cycle assay and apoptosis assay. Molecular approaches including Western blot, RNA sequencing, quantitative real-time PCR and immunofluorescence were employed as well. Tagitinin C, a sesquiterpene lactone isolated from , inhibits the growth of colorectal cancer cells including HCT116 cells, and induced an oxidative cellular microenvironment resulting in ferroptosis of HCT116 cells. Tagitinin C-induced ferroptosis was accompanied with the attenuation of glutathione (GSH) levels and increased in lipid peroxidation. Mechanistically, tagitinin C induced endoplasmic reticulum (ER) stress and oxidative stress, thus activating nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). As a downstream gene (effector) of Nrf2, heme oxygenase-1 (HO-1) expression increased significantly with the treatment of tagitinin C. Upregulated HO-1 led to the increase in the labile iron pool, which promoted lipid peroxidation, meanwhile tagitinin C showed synergistic anti-tumor effect together with erastin. In summary, we provided the evidence that tagitinin C induces ferroptosis in colorectal cancer cells and has synergistic effect together with erastin. Mechanistically, tagitinin C induces ferroptosis through ER stress-mediated activation of PERK-Nrf2-HO-1 signaling pathway. Tagitinin C, identified as a novel ferroptosis inducer, may be effective chemosensitizer that can expand the efficacy and range of chemotherapeutic agents.
Low-Resolution ADCs Constrained Joint Uplink/Downlink Channel Estimation for mmWave Massive MIMO
The use of low-resolution analog-to-digital converters (ADCs) in receivers has emerged as an effective solution for reducing power consumption in millimeter-wave (mmWave) massive multiple-input–multiple-output (MIMO) systems. However, low-resolution ADCs also pose significant challenges for channel estimation. To address this issue, we propose a joint uplink/downlink (UL/DL) channel estimation algorithm that utilizes the spatial reciprocity of frequency division duplex (FDD) to improve the estimation of quantized UL channels. Quantified UL/DL channels are concentrated at the BS for joint estimation. This estimation problem is regarded as a compressed sensing problem with finite bits, which has led to the development of expectation-maximization-based quantitative generalized approximate messaging (EM-QGAMP) algorithms. In the expected step, QGAMP is used for posterior estimation of sparse channel coefficients, and the block maximization minimization (MM) algorithm is introduced in the maximization step to improve the estimation accuracy. Finally, simulation results verified the robustness of the proposed EM-QGAMP algorithm, and the proposed algorithm’s NMSE (normalized mean squared error) outperforms traditional methods by over 90% and recent state-of-the-art techniques by 30%.
ABCC8 mRNA expression is an independent prognostic factor for glioma and can predict chemosensitivity
Glioma is the most common primary intracranial tumor and is associated with very low survival rates. The development of reliable biomarkers can help to elucidate the molecular mechanisms involved in glioma development. Here the expression of ABCC8 mRNA, clinical characteristics, and survival information based on 1893 glioma samples from four independent databases were analyzed. The expression patterns of ABCC8 mRNA were compared by a Chi square test. The overall survival rate of gliomas was evaluated according to the expression level of ABCC8 mRNA. The prognostic value of this marker in gliomas was tested using Cox single factor and multi factor regression analyses. We found patients with low WHO grade, oligodendrocytoma, low molecular grade, IDH mutation, and 1p19q combined deletion had high ABCC8 mRNA expression. The patients with high expression of ABCC8 mRNA had longer survival. ABCC8 mRNA expression was a new independent prognostic index for glioma. Temozolomide chemotherapy was an independent index to prolong overall survival in high ABCC8 mRNA expression glioma patients, whereas in patients with low expression, there was no significant difference. So ABCC8 mRNA expression could be an independent prognostic indicator for glioma patients and could predict the sensitivity of glioma to temozolomide.
Rainfall-Induced Geological Hazard Susceptibility Assessment in the Henan Section of the Yellow River Basin: Multi-Model Approaches Supporting Disaster Mitigation and Sustainable Development
The Henan section of the Yellow River Basin (3.62 × 104 km2, 21.7% of Henan Province), a vital agro-industrial and politico-economic hub, faces frequent rainfall-induced geohazards. The 2021 “7·20” Zhengzhou disaster, causing 398 fatalities and CNY 120.06 billion loss, highlights its vulnerability to extreme weather. While machine learning (ML) aids geohazard assessment, rainfall-induced geological hazard susceptibility assessment (RGHSA) remains understudied, with single ML models lacking interpretability and precision for complex disaster data. This study presents a hybrid framework (IVM-ML) that integrates the Information Value Model (IVM) and ML. The framework uses historical disaster data and 11 factors (e.g., rainfall erosivity, relief amplitude) to calculate information values and construct a machine learning prediction model with these quantitative results. By combining IVM’s spatial analysis with ML’s predictive power, it addresses the limitations of conventional single models. ROC curve validation shows the Random Forest (RF) model in IVM-ML achieves the highest accuracy (AUC = 0.9599), outperforming standalone IVM (AUC = 0.7624). All models exhibit AUC values exceeding 0.75, demonstrating strong capability in capturing rainfall–hazard relationships and reliable predictive performance. Findings support RGHSA practices in the mid-Yellow River urban cluster, offering insights for sustainable risk management, land-use planning, and climate resilience. Bridging geoscience and data-driven methods, this study advances global sustainability goals for disaster reduction and environmental security in vulnerable riverine regions.
A Survey of Intelligent Driving Vehicle Trajectory Tracking Based on Vehicle Dynamics
Trajectory tracking control, as one of the core technologies of intelligent driving vehicles, determines the driving performance and safety of intelligent driving vehicles and has received extensive attention and research. In recent years, most of the research results of trajectory tracking control are only applicable to conventional working conditions; however, the actual operating conditions of intelligent driving vehicles are complex and variable, so the research of trajectory tracking control algorithm should be extended to the high-speed low-adhesion coefficient, large curvature, variable curvature, and other compound limit working conditions. This requires more consideration of the vehicle dynamics in the controller design. In this article, a comprehensive review of trajectory tracking control under extreme operating conditions is conducted from three levels: vehicle dynamics model, vehicle speed tracking (longitudinal motion control), and path tracking (transverse motion control), and the existing research results are analyzed and summarized to obtain the research trends and pain points and difficulties in each field. On this basis, the future outlook of trajectory tracking control is proposed, which is expected to provide some help and inspiration to the research workers in this field.
Genome-Wide Identification of 14-3-3 gene family reveals their diverse responses to abiotic stress by interacting with StABI5 in Potato (Solanum tuberosum L.)
The 14-3-3 genes are widely present in plants and participate in a wide range of cellular and physiological processes. In the current study, twelve 14-3-3s were identified from potato genome. According to phylogenetic evolutionary analysis, potato 14-3-3s were divided into ϵ and non-ϵ groups. Conserved motif and gene structure analysis displayed a distinct class-specific divergence between the ϵ group and non-ϵ group. Multiple sequence alignments and three-dimensional structure analysis of 14-3-3 proteins indicated all the members contained nine conservative antiparallel α-helices. The majority of 14-3-3s had transcript accumulation in each detected potato tissue, implying their regulatory roles across all stages of potato growth and development. Numerous cis-acting elements related to plant hormones and abiotic stress response were identified in the promoter region of potato 14-3-3s , and the transcription levels of these genes fluctuated to different degrees under exogenous ABA, salt and drought stress, indicating that potato 14-3-3s may be involved in different hormone signaling pathways and abiotic stress responses. In addition, eight potato 14-3-3s were shown to interact with StABI5, which further demonstrated that potato 14-3-3s were involved in the ABA-dependent signaling pathway. This study provides a reference for the identification of the 14-3-3 gene family in other plants, and provides important clues for cloning potential candidates in response to abiotic stresses in potato.
Battery Mode Selection and Carbon Emission Decisions of Competitive Electric Vehicle Manufacturers
Competition in China’s electric vehicle industry has intensified significantly in recent years. The production mode of power batteries, serving as the pivotal component in these vehicles, has emerged as a critical challenge for electric vehicle manufacturers. We considered a system comprising an electric vehicle (EV) manufacturer with power battery production technology and another EV manufacturer lacking power battery production technology. In the context of carbon trading policy, we constructed and solved Cournot competitive game models and asymmetric Nash negotiation game models in the CC, PC, and WC modes. We examined the decision-making process of electric vehicle manufacturers regarding power battery production modes and carbon emission reduction strategies. Our research indicates the following: (1) The reasonable patent fee for power batteries and the wholesale price of power batteries can not only compensate power battery production technology manufacturers for the losses caused by market competition but can also strengthen the cooperative relationship between manufacturers. (2) EV manufacturers equipped with power battery production technology exhibit higher profitability within the framework of a perfectly competitive power battery production mode. Conversely, manufacturers lacking power cell production technology demonstrate greater profitability when operating under a more collaborative power cell production mode. (3) Refraining from blindly persisting with and advocating for carbon emission reduction measures is advisable for manufacturers amidst rising carbon trading prices.
Effects of Different Planting Patterns on Growth and Yield Components of Foxtail Millet
Different cultivation measures, including seeding patterns, plastic film mulching, and drip irrigation, significantly affect crop growth and yield. This study conducted a two-year field experiment, involving eight treatments: hole seeding and drill seeding, mulching and bare land, as well as with and without drip irrigation. Analyzed the impact on agronomic traits, photosynthesis, chlorophyll fluorescence parameters, and yield components during the growth period of foxtail millet. The results of two years indicate that the growth trend of foxtail millet was consistent under both hole seeding and drill seeding. The best performance was achieved with drip irrigation treatment for mulching, followed by drip irrigation for bare land, no drip irrigation for mulching, and no drip irrigation for bare land. In 2024, the maximum yield of HFD in hole seeding pattern was 4627.55 kg/ha. The maximum yield of DFD in drill pattern is 4430.22 kg/ha. In summary, based on the comprehensive optimization of two years of data and the effective accumulated temperature in the local area, the best planting method is hole seeding, mulching, and drip irrigation. In cold and cool regions, mulching with film aids in increasing the accumulated temperature of the tillage layer. Hole seeding is conducive to enhancing seedling quality. Performing drip irrigation once during the late heading stage stimulates the growth and fruiting of foxtail millet, thereby increasing yield.
Physiological and Molecular Responses of Seed Germination to Irrigating-Sowing in Drought-Stressed Foxtail Millet (Setaria italica L.)
Foxtail millet (Setaria italica L.) is an important crop in northern China’s arid and semi-arid regions. Frequent spring droughts and limited irrigation facilities often cause poor seed germination due to insufficient soil moisture, threatening food security. The irrigation-sowing technique, which creates a localized moist microenvironment around seeds, effectively addresses this issue. However, this technique has been poorly studied, and its effects on foxtail millet seed germination remain unclear. To address this, field experiments were conducted using a two-factor split-plot design, with three drought levels and five irrigation gradients. The results showed that irrigation-sowing increased soil moisture, promoted root–shoot growth coordination, and improved germination characteristics. Transcriptome analysis of seeds under moderate drought compared the optimal irrigation treatment (13.5 m3·hm−2) with the non-irrigated control (0 m3·hm−2), identifying 2169 differentially expressed genes. Seeds receiving irrigation exhibited higher transcript abundance in pathways related to carbohydrate metabolism, energy production, secondary metabolism, and hormone signaling. Physiological measurements further showed increased α/β-amylase activity, while starch, sucrose, and cellulose content decreased. Glycolytic enzyme activity was enhanced, and ATP content increased by 125%. Additionally, phenylpropanoid metabolism was promoted, and proanthocyanidin accumulation increased by 11.5%. Hormone analysis showed that the contents of IAA and GA increased as germination progressed by 29.09% and 54.70%, respectively, while ABA content decreased. Overall, irrigation-sowing serves as an upstream moisture signal that reshapes metabolic and hormonal states associated with improved germination performance.
Macrolide and fluoroquinolone associated mutations in Mycoplasma genitalium in a retrospective study of male and female patients seeking care at a STI Clinic in Guangzhou, China, 2016-2018
Background Antimicrobial resistance in M. genitalium is a growing clinical problem. We investigated the mutations associated with macrolide and fluoroquinolone resistance, two commonly used medical regimens for treatment in China. Our aim is to analyze the prevalence and diversity of mutations among M. genitalium -positive clinical specimens in Guangzhou, south China. Methods A total of 154 stored M. genitalium positive specimens from men and women attending a STI clinic were tested for macrolide and fluoroquinolone mutations. M. genitalium was detected via TaqMan MGB real-time PCR. Mutations associated with macrolide resistance were detected using primers targeting region V of the 23S rRNA gene. Fluoroquinolone resistant mutations were screened via primers targeting topoisomerase IV ( parC ) and DNA gyrase ( gyrA ). Results 98.7% (152/154), 95.5% (147/154) and 90.3% (139/154) of M. genitalium positive samples produced sufficient amplicon for detecting resistance mutations in 23S rRNA, gyrA and parC genes, respectively. 66.4% (101/152), 0.7% (1/147) and 77.7% (108/139) samples manifested mutations in 23S rRNA, gyrA and parC genes, respectively. A2072G (59/101, 58.4%) and S83I (79/108, 73.1%) were highly predominating in 23S rRNA and parC genes, respectively. Two samples had amino acid substitutions in gyrA (M95I and A96T, respectively). Two samples had two amino acid substitutions in parC (S83I + D87Y). 48.6% (67/138) of samples harbored both macrolide and fluoroquinolone resistance-associated mutations. The most common combination of mutations was A2072G (23S rRNA) and S83I ( parC ) (40/67, 59.7%). One sample had three amino acid changes in 23S rRNA, gyrA and parC genes (A2072G + A96T + S83I). Conclusions The high antimicrobial resistance rate of M. genitalium in Guangzhou is a very worrying problem and suggests that antimicrobial resistance testing and the development of new antibiotic regimens are crucially needed.