Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
32,623 result(s) for "Wang, Zhen"
Sort by:
Silver nanoparticles: Synthesis, medical applications and biosafety
Silver nanoparticles (AgNPs) have been one of the most attractive nanomaterials in biomedicine due to their unique physicochemical properties. In this paper, we review the state-of-the-art advances of AgNPs in the synthesis methods, medical applications and biosafety of AgNPs. The synthesis methods of AgNPs include physical, chemical and biological routes. AgNPs are mainly used for antimicrobial and anticancer therapy, and also applied in the promotion of wound repair and bone healing, or as the vaccine adjuvant, anti-diabetic agent and biosensors. This review also summarizes the biological action mechanisms of AgNPs, which mainly involve the release of silver ions (Ag+), generation of reactive oxygen species (ROS), destruction of membrane structure. Despite these therapeutic benefits, their biological safety problems such as potential toxicity on cells, tissue, and organs should be paid enough attention. Besides, we briefly introduce a new type of Ag particles smaller than AgNPs, silver Ångstrom (Å, 1 Å = 0.1 nm) particles (AgÅPs), which exhibit better biological activity and lower toxicity compared with AgNPs. Finally, we conclude the current challenges and point out the future development direction of AgNPs.
Driving force and pathway in polyelectrolyte complex coacervation
There is notable discrepancy between experiments and coarse-grained model studies regarding the thermodynamic driving force in polyelectrolyte complex coacervation: experiments find the free energy change to be dominated by entropy, while simulations using coarse-grained models with implicit solvent usually report a large, even dominant energetic contribution in systems with weak to intermediate electrostatic strength. Here, using coarse-grained, implicit-solvent molecular dynamics simulation combined with thermodynamic analysis, we study the potential of mean force (PMF) in the two key stages on the coacervation pathway for symmetric polyelectrolyte mixtures: polycation–polyanion complexation and polyion pair–pair condensation.We show that the temperature dependence in the dielectric constant of water gives rise to a substantial entropic contribution in the electrostatic interaction. By accounting for this electrostatic entropy, which is due to solvent reorganization, we find that under common conditions (monovalent ions, room temperature) for aqueous systems, both stages are strongly entropy-driven with negligible or even unfavorable energetic contributions, consistent with experimental results. Furthermore, for weak to intermediate electrostatic strengths, this electrostatic entropy, rather than the counterion-release entropy, is the primary entropy contribution. From the calculated PMF, we find that the supernatant phase consists predominantly of polyion pairs with vanishingly small concentration of bare polyelectrolytes, and we provide an estimate of the spinodal of the supernatant phase. Finally, we showthat prior to contact, two neutral polyion pairsweakly attract each other by mutually induced polarization, providing the initial driving force for the fusion of the pairs.
How to characterize figures of merit of two-dimensional photodetectors
Photodetectors based on two-dimensional (2D) materials have been the focus of intensive research and development over the past decade. However, a gap has long persisted between fundamental research and mature applications. One of the main reasons behind this gap has been the lack of a practical and unified approach for the characterization of their figures of merit, which should be compatible with the traditional performance evaluation system of photodetectors. This is essential to determine the degree of compatibility of laboratory prototypes with industrial technologies. Here we propose general guidelines for the characterization of the figures of merit of 2D photodetectors and analyze common situations when the specific detectivity, responsivity, dark current, and speed can be misestimated. Our guidelines should help improve the standardization and industrial compatibility of 2D photodetectors. The lack of a standardized approach for the characterization of the performance of 2D photodetectors represents an important obstacle towards their industrialization. Here, the authors propose practical guidelines to characterize their figures of merit and analyse common situations where their performance can be misestimated.
When and for Whom Ethical Leadership is More Effective in Eliciting Work Meaningfulness and Positive Attitudes: The Moderating Roles of Core Self-Evaluation and Perceived Organizational Support
Despite urgent calls for more research on the integration of business ethics and the meaning of work, to date, there have been few corresponding efforts, and we know surprisingly little about this relationship. In this study, we address this issue by examining when and for whom ethical leadership is more (or less) effective in promoting a sense of work meaningfulness among employees, and their subsequent work attitudes. Drawing on the contingency theories of leadership and work meaningfulness literature, we speculate that both employees' core self-evaluation (CSE; as a dispositional characteristic) and perceived organizational support (POS; as a situational characteristic) moderate the relationship, but in different ways, and these associations carry over to employees' subsequent work attitudes in terms of job satisfaction, organizational commitment and turnover intention. We test our hypotheses with two-wave survey data collected from 377 employees. Results indicate that ethical leadership is effective in eliciting work meaningfulness and attitudes for employees higher in CSE or when POS is lower, and ineffective for those lower in CSE or when TOS is higher. A supplementary analysis reveals a three-way interaction between ethical leadership, CSE and POS in predicting a sense of work meaningfulness and subsequent work attitudes. Our research cautions that ethical leadership is not a universally positive practice; it can be ineffective or even have a negative impact under some circumstances.
A Numerical Method for Delayed Fractional-Order Differential Equations
A numerical method for nonlinear fractional-order differential equations with constant or time-varying delay is devised. The order here is an arbitrary positive real number, and the differential operator is with the Caputo definition. The general Adams-Bashforth-Moulton method combined with the linear interpolation method is employed to approximate the delayed fractional-order differential equations. Meanwhile, the detailed error analysis for this algorithm is given. In order to compare with the exact analytical solution, a numerical example is provided to illustrate the effectiveness of the proposed method.
Connexin 43 Phosphorylation: Implications in Multiple Diseases
Connexin 43 (Cx43) is most widely distributed in mammals, especially in the cardiovascular and nervous systems. Its phosphorylation state has been found to be regulated by the action of more than ten kinases and phosphatases, including mitogen-activated protein kinase/extracellular signaling and regulating kinase signaling. In addition, the phosphorylation status of different phosphorylation sites affects its own synthesis and assembly and the function of the gap junctions (GJs) to varying degrees. The phosphorylation of Cx43 can affect the permeability, electrical conductivity, and gating properties of GJs, thereby having various effects on intercellular communication and affecting physiological or pathological processes in vitro and in vivo. Therefore, clarifying the relationship between Cx43 phosphorylation and specific disease processes will help us better understand the disease. Based on the above clinical and preclinical findings, we present in this review the functional significance of Cx43 phosphorylation in multiple diseases and discuss the potential of Cx43 as a drug target in Cx43-related disease pathophysiology, with an emphasis on the importance of connexin 43 as an emerging therapeutic target in cardiac and neuroprotection.
Image-charge effects on ion adsorption near aqueous interfaces
Electrostatic interactions near surfaces and interfaces are ubiquitous in many fields of science. Continuum electrostatics predicts that ions will be attracted to conducting electrodes but repelled by surfaces with lower dielectric constant than the solvent. However, several recent studies found that certain “chaotropic” ions have similar adsorption behavior at air/water and graphene/water interfaces. Here we systematically study the effect of polarization of the surface, the solvent, and solutes on the adsorption of ions onto the electrode surfaces using molecular dynamics simulation. An efficient method is developed to treat an electrolyte system between two parallel conducting surfaces by exploiting the mirror-expanded symmetry of the exact image-charge solution. With neutral surfaces, the image interactions induced by the solvent dipoles and ions largely cancel each other, resulting in no significant net differences in the ion adsorption profile regardless of the surface polarity. Under an external electric field, the adsorption of ions is strongly affected by the surface polarization, such that the charge separation across the electrolyte and the capacitance of the cell is greatly enhanced with a conducting surface over a low-dielectric-constant surface. While the extent of ion adsorption is highly dependent on the electrolyte model (the polarizability of solvent and solutes, as well as the van derWaals radii), we find the effect of surface polarization on ion adsorption is consistent throughout different electrolyte models.
Programmed cell death in atherosclerosis and vascular calcification
The concept of cell death has been expanded beyond apoptosis and necrosis to additional forms, including necroptosis, pyroptosis, autophagy, and ferroptosis. These cell death modalities play a critical role in all aspects of life, which are noteworthy for their diverse roles in diseases. Atherosclerosis (AS) and vascular calcification (VC) are major causes for the high morbidity and mortality of cardiovascular disease. Despite considerable advances in understanding the signaling pathways associated with AS and VC, the exact molecular basis remains obscure. In the article, we review the molecular mechanisms that mediate cell death and its implications for AS and VC. A better understanding of the mechanisms underlying cell death in AS and VC may drive the development of promising therapeutic strategies.