Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
2,069
result(s) for
"Wang, Zhiyu"
Sort by:
Development of quasi-solid-state anode-free high-energy lithium sulfide-based batteries
2022
Anode-free lithium batteries without lithium metal excess are a practical option to maximize the energy content beyond the conventional design of Li-ion and Li metal batteries. However, their performance and reliability are still limited by using low-capacity oxygen-releasing intercalation cathodes and flammable liquid electrolytes. Herein, we propose quasi-solid-state anode-free batteries containing lithium sulfide-based cathodes and non-flammable polymeric gel electrolytes. Such batteries exhibit an energy density of 1323 Wh L
−1
at the pouch cell level. Moreover, the lithium sulfide-based anode-free cell chemistry endows intrinsic safety thanks to a lack of uncontrolled exothermic reactions of reactive oxygen and excess Li inventory. Furthermore, the non-flammable gel electrolyte, developed from MXene-doped fluorinated polymer, inhibits polysulfide shuttling, hinders Li dendrite formation and further secures cell safety. Finally, we demonstrate the improved cell safety against mechanical, electrical and thermal abuses.
The development of anode-free batteries requires investigations at the electrode and electrolyte levels. Here, the authors report a high-energy quasi-solid-state anode-free pouch cell with a Li2S-based cathode that demonstrates enhanced safety features.
Journal Article
Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation
2021
Seawater electrolysis represents a potential solution to grid-scale production of carbon-neutral hydrogen energy without reliance on freshwater. However, it is challenged by high energy costs and detrimental chlorine chemistry in complex chemical environments. Here we demonstrate chlorine-free hydrogen production by hybrid seawater splitting coupling hydrazine degradation. It yields hydrogen at a rate of 9.2 mol h
–1
g
cat
–1
on NiCo/MXene-based electrodes with a low electricity expense of 2.75 kWh per m
3
H
2
at 500 mA cm
–2
and 48% lower energy equivalent input relative to commercial alkaline water electrolysis. Chlorine electrochemistry is avoided by low cell voltages without anode protection regardless Cl
–
crossover. This electrolyzer meanwhile enables fast hydrazine degradation to ~3 ppb residual. Self-powered hybrid seawater electrolysis is realized by integrating low-voltage direct hydrazine fuel cells or solar cells. These findings enable further opportunities for efficient conversion of ocean resources to hydrogen fuel while removing harmful pollutants.
Seawater electrolysis is promising for grid-scale H
2
production without freshwater reliance, but high energy costs and detrimental Cl chemistry reduce its practical potential. Here, authors developed an energy-saving hybrid seawater electrolyzer for chlorine-free H
2
production and N
2
H
4
degradation.
Journal Article
Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing
2013
Two-photon-pumped dye lasers are very important because of their applications in wavelength up-conversion, optical data storage, biological imaging and photodynamic therapy. Such lasers are very difficult to realize in the solid state because of the aggregation-caused quenching. Here we demonstrate a new two-photon-pumped micro-laser by encapsulating the cationic pyridinium hemicyanine dye into an anionic metal-organic framework (MOF). The resultant MOF⊃dye composite exhibits significant two-photon fluorescence because of the large absorption cross-section and the encapsulation-enhanced luminescent efficiency of the dye. Furthermore, the well-faceted MOF crystal serves as a natural Fabry–Perot resonance cavity, leading to lasing around 640 nm when pumped with a 1064-nm pulse laser. This strategy not only combines the crystalline benefit of MOFs and luminescent behaviour of organic dyes but also creates a new synergistic two-photon-pumped lasing functionality, opening a new avenue for the future creation of solid-state photonic materials and devices.
Two-photon-pumped dye lasers are useful for applications such as biological imaging; however, loss processes reduce their efficiency. Here, metal-organic frameworks, into which the laser dye is incorporated, demonstrate enhanced laser operation because losses such as dye aggregation-caused quenching are reduced.
Journal Article
Experimental observation of Weyl points
2015
The massless solutions to the Dirac equation are described by the so-called Weyl Hamiltonian. The Weyl equation requires a particle to have linear dispersion in all three dimensions while being doubly degenerate at a single momentum point. These Weyl points are topological monopoles of quantized Berry flux exhibiting numerous unusual properties. We performed angle-resolved microwave transmission measurements through a double-gyroid photonic crystal with inversion-breaking where Weyl points have been theoretically predicted to occur. The excited bulk states show two linear dispersion bands touching at four isolated points in the three-dimensional Brillouin zone, indicating the observation of Weyl points. This work paves the way to a variety of photonic topological phenomena in three dimensions.
Journal Article
Fast and Robust Optical Cooling via Shortcut to Adiabaticity
2025
Optical cooling is a key technique for preparing ultracold atoms in quantum technologies and precision experiments. We employ shortcut-to-adiabaticity (STA) techniques to accelerate and stabilize laser-based atomic cooling protocols. This approach improves the performance of conventional adiabatic momentum transfer schemes by addressing key limitations such as Doppler shifts, laser intensity fluctuations, and spontaneous emission. We first examine two- and three-level atomic systems subjected to counter-propagating laser pulses that induce momentum reduction through photon recoil. STA methods are then employed to construct pulse sequences that are robust against detuning errors and amplitude noise, outperforming standard π-pulse schemes in resilience. Meanwhile, we analyze the dissipative dynamics during the momentum transfer and demonstrate the superiority of the STA protocol in enhancing momentum transfer efficiency via accelerated control. The results demonstrate that STA can significantly improve both the efficiency and robustness of cooling. These findings have implications for applications in atomic physics, quantum information processing, and precision metrology.
Journal Article
Chronic psychological stress promotes breast cancer pre-metastatic niche formation by mobilizing splenic MDSCs via TAM/CXCL1 signaling
2023
Background
Emerging studies have identified chronic psychological stress as an independent risk factor influencing breast cancer growth and metastasis. However, the effects of chronic psychological stress on pre-metastatic niche (PMN) formation and the underlying immunological mechanisms remain largely unknown.
Methods
The effects and molecular mechanisms of chronic unpredictable mild stress (CUMS) on modulating tumor-associated macrophages (TAMs) and PMN formation were clarified by multiplex immunofluorescence technique, cytokine array, chromatin immunoprecipitation, the dual-luciferase reporter assay, and breast cancer xenografts. Transwell and CD8
+
T cytotoxicity detection were used to analyze the mobilization and function of myeloid-derived suppressor cells (MDSCs). mCherry-labeled tracing strategy and bone marrow transplantation were applied to explore the crucial role of splenic CXCR2
+/+
MDSCs facilitating PMN formation under CUMS.
Results
CUMS significantly promoted breast cancer growth and metastasis, accompanied by TAMs accumulation in the microenvironment. CXCL1 was identified as a crucial chemokine in TAMs facilitating PMN formation in a glucocorticoid receptor (GR)-dependent manner. Interestingly, the spleen index was significantly reduced under CUMS, and splenic MDSCs were validated as a key factor mediating CXCL1-induced PMN formation. The molecular mechanism study revealed that TAM-derived CXCL1 enhanced the proliferation, migration, and anti-CD8
+
T cell functions of MDSCs via CXCR2. Moreover, CXCR2 knockout and CXCR2
−/−
MDSCs transplantation significantly impaired CUMS-mediated MDSC elevation, PMN formation, and breast cancer metastasis.
Conclusion
Our findings shed new light on the association between chronic psychological stress and splenic MDSC mobilization, and suggest that stress-related glucocorticoid elevation can enhance TAM/CXCL1 signaling and subsequently recruit splenic MDSCs to promote PMN formation via CXCR2.
Graphical Abstract
Journal Article
Giant ferroelectric polarization in a bilayer graphene heterostructure
2022
At the interface of van der Waals heterostructures, the crystal symmetry and the electronic structure can be reconstructed, giving rise to physical properties superior to or absent in parent materials. Here by studying a Bernal bilayer graphene moiré superlattice encapsulated by 30°-twisted boron nitride flakes, we report an unprecedented ferroelectric polarization with the areal charge density up to 10
13
cm
−2
, which is far beyond the capacity of a moiré band. The translated polarization ~5 pC m
−1
is among the highest interfacial ferroelectrics engineered by artificially stacking van der Waals crystals. The gate-specific ferroelectricity and co-occurring anomalous screening are further visualized via Landau levels, and remain robust for Fermi surfaces outside moiré bands, confirming their independence on correlated electrons. We also find that the gate-specific resistance hysteresis loops could be turned off by the other gate, providing an additional control knob. Furthermore, the ferroelectric switching can be applied to intrinsic properties such as topological valley current. Overall, the gate-specific ferroelectricity with strongly enhanced charge polarization may encourage more explorations to optimize and enrich this novel class of ferroelectricity, and promote device applications for ferroelectric switching of various quantum phenomena.
Interfacial ferroelectricity may emerge in moiré superlattices. Here, the authors find that the polarized charge is much larger than the capacity of the moiré miniband and the associated anomalous screening exists outside the band.
Journal Article
Selective in vivo metabolic cell-labeling-mediated cancer targeting
2017
Metabolic labeling of the cell surface with a caged azide sugar enabled cleavage-mediated activation by enzymes overexpressed in cancer cells, allowing enhanced targeted delivery of a doxorubicin conjugate through copper-free click chemistry.
Distinguishing cancer cells from normal cells through surface receptors is vital for cancer diagnosis and targeted therapy. Metabolic glycoengineering of unnatural sugars provides a powerful tool to manually introduce chemical receptors onto the cell surface; however, cancer-selective labeling still remains a great challenge. Herein we report the design of sugars that can selectively label cancer cells both
in vitro
and
in vivo
. Specifically, we inhibit the cell-labeling activity of tetraacetyl-
N
-azidoacetylmannosamine (Ac
4
ManAz) by converting its anomeric acetyl group to a caged ether bond that can be selectively cleaved by cancer-overexpressed enzymes and thus enables the overexpression of azido groups on the surface of cancer cells. Histone deacetylase and cathepsin L-responsive acetylated azidomannosamine, one such enzymatically activatable Ac
4
ManAz analog developed, mediated cancer-selective labeling
in vivo
, which enhanced tumor accumulation of a dibenzocyclooctyne–doxorubicin conjugate via click chemistry and enabled targeted therapy against LS174T colon cancer, MDA-MB-231 triple-negative breast cancer and 4T1 metastatic breast cancer in mice.
Journal Article
Aiduqing formula inhibits breast cancer metastasis by suppressing TAM/CXCL1-induced Treg differentiation and infiltration
by
Zheng, Yifeng
,
Wang, Neng
,
Yang, Bowen
in
Aiduqing formula
,
Animals
,
Antineoplastic Agents - chemistry
2021
Background
Metastasis represents the leading cause of death in patients with breast cancer. Traditional Chinese medicine is particularly appreciated for metastatic diseases in Asian countries due to its benefits for survival period prolongation and immune balance modulation. However, the underlying molecular mechanisms remain largely unknown. This study aimed to explore the antimetastatic effect and immunomodulatory function of a clinical formula Aiduqing (ADQ).
Methods
Naive CD4
+
T cells, regulatory T cells (Tregs), and CD8
+
T cells were sorted by flow cytometry. Then, breast cancer cells and these immune cells were co-cultured in vitro or co-injected into mice in vivo to simulate their coexistence. Flow cytometry, ELISA, qPCR, double luciferase reporter gene assay, and chromatin immunoprecipitation assay were conducted to investigate the immunomodulatory and antimetastatic mechanisms of ADQ.
Results
ADQ treatment by oral gavage significantly suppressed 4T1-Luc xenograft growth and lung metastasis in the orthotopic breast cancer mouse model, without noticeable hepatotoxicity, nephrotoxicity, or hematotoxicity. Meanwhile, ADQ remodeled the immunosuppressive tumor microenvironment (TME) by increasing the infiltration of tumor-infiltrating lymphocytes (TILs) and cytotoxic CD8
+
T cells, and decreasing the infiltration of Tregs, naive CD4
+
T cells, and tumor-associated macrophages (TAMs). Molecular mechanism studies revealed that ADQ remarkably inhibited CXCL1 expression and secretion from TAMs and thus suppressed the chemotaxis and differentiation of naive CD4
+
T cells into Tregs, leading to the enhanced cytotoxic effects of CD8
+
T cells. Mechanistically, TAM-derived CXCL1 promoted the differentiation of naive CD4
+
T cells into Tregs by transcriptionally activating the NF-κB/FOXP3 signaling. Lastly, mouse 4T1-Luc xenograft experiments validated that ADQ formula inhibited breast cancer immune escape and lung metastasis by suppressing the TAM/CXCL1/Treg pathway.
Conclusions
This study not only provides preclinical evidence supporting the application of ADQ in inhibiting breast cancer metastasis but also sheds novel insights into TAM/CXCL1/NF-κB/FOXP3 signaling as a promising therapeutic target for Treg modulation and breast cancer immunotherapy.
5spcww6AwskguE5dGnjCJQ
Video Abstract
Journal Article
Dietary Compound Isoliquiritigenin Inhibits Breast Cancer Neoangiogenesis via VEGF/VEGFR-2 Signaling Pathway
2013
Angiogenesis is crucial for cancer initiation, development and metastasis. Identifying natural botanicals targeting angiogenesis has been paid much attention for drug discovery in recent years, with the advantage of increased safety. Isoliquiritigenin (ISL) is a dietary chalcone-type flavonoid with various anti-cancer activities. However, little is known about the anti-angiogenic activity of isoliquiritigenin and its underlying mechanisms. Herein, we found that ISL significantly inhibited the VEGF-induced proliferation of human umbilical vein endothelial cells (HUVECs) at non-toxic concentration. A series of angiogenesis processes including tube formation, invasion and migration abilities of HUVECs were also interrupted by ISL in vitro. Furthermore, ISL suppressed sprout formation from VEGF-treated aortic rings in an ex-vivo model. Molecular mechanisms study demonstrated that ISL could significantly inhibit VEGF expression in breast cancer cells via promoting HIF-1α (Hypoxia inducible factor-1α) proteasome degradation and directly interacted with VEGFR-2 to block its kinase activity. In vivo studies further showed that ISL administration could inhibit breast cancer growth and neoangiogenesis accompanying with suppressed VEGF/VEGFR-2 signaling, elevated apoptosis ratio and little toxicity effects. Molecular docking simulation indicated that ISL could stably form hydrogen bonds and aromatic interactions within the ATP-binding region of VEGFR-2. Taken together, our study shed light on the potential application of ISL as a novel natural inhibitor for cancer angiogenesis via the VEGF/VEGFR-2 pathway. Future studies of ISL for chemoprevention or chemosensitization against breast cancer are thus warranted.
Journal Article