Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
41 result(s) for "Wang-Erlandsson, Lan"
Sort by:
Revegetation Impacts on Moisture Recycling and Precipitation Trends in the Chinese Loess Plateau
The Loess Plateau in China has experienced a remarkable greening trend due to vegetation restoration efforts in recent decades. However, the response of precipitation to this greening remains uncertain. In this study, we identified and evaluated the main moisture source regions for precipitation over the Loess Plateau from 1982 to 2019 using a moisture tracking model, the modified WAM‐2layers model, and the conceptual framework of the precipitationshed. By integrating multiple linear regression analysis with a conceptual hydrologically weighting method, we quantified the effective influence of different environmental factors for precipitation, particularly the effect of vegetation. Our analysis revealed that local precipitation has increased on average by 0.16 mm yr−1 and evaporation by 5.17 mm yr−1 over the period 2000–2019 after the initiation of the vegetation restoration project. Regional greening including the Loess Plateau contributed to precipitation for about 0.83 mm yr−1, among which local greening contributed for about 0.07 mm yr−1. Local vegetation contribution is due to both an enhanced local evaporation as well as an increased local moisture recycling (6.9% in 1982–1999; 8.3% in 2000–2019). Thus, our study shows that local revegetation had a positive effect on local precipitation, and the primary cause of the observed increase in precipitation over the Loess Plateau is due to a combination of local greening and circulation change. Our study underscores that increasing vegetation over the Loess Plateau has exerted strong influence on local precipitation and supports the positive effects for current and future vegetation restoration plans toward more resilient water resources managements. Key Points Precipitation moisture source for Chinese Loess Plateau and its change were identified using a moisture tracking model The contribution of locally recycled moisture to Loess Plateau precipitation increased from 6.9% in 1982–1999 to 8.3% in 2000–2019 Regional greening promotes precipitation by about 0.83 mm yr−1, while local vegetation accounts for about 0.07 mm yr−1 during 2000–2019
Integrating the Water Planetary Boundary With Water Management From Local to Global Scales
The planetary boundaries framework defines the “safe operating space for humanity” represented by nine global processes that can destabilize the Earth System if perturbed. The water planetary boundary attempts to provide a global limit to anthropogenic water cycle modifications, but it has been challenging to translate and apply it to the regional and local scales at which water problems and management typically occur. We develop a cross‐scale approach by which the water planetary boundary could guide sustainable water management and governance at subglobal contexts defined by physical features (e.g., watershed or aquifer), political borders (e.g., city, nation, or group of nations), or commercial entities (e.g., corporation, trade group, or financial institution). The application of the water planetary boundary at these subglobal contexts occurs via two approaches: (i) calculating fair shares, in which local water cycle modifications are compared to that context's allocation of the global safe operating space, taking into account biophysical, socioeconomic, and ethical considerations; and (ii) defining a local safe operating space, in which interactions between water stores and Earth System components are used to define local boundaries required for sustaining the local water system in stable conditions, which we demonstrate with a case study of the Cienaga Grande de Santa Marta wetlands in Colombia. By harmonizing these two approaches, the water planetary boundary can ensure that water cycle modifications remain within both local and global boundaries and complement existing water management and governance approaches. Key Points Local and regional water management responds to and is influenced by global water cycle processes The planetary boundaries framework is useful for reconciling local and global water sustainability goals The framework can be applied at scales including nations, watersheds, aquifers, or commercial entities
Hydroclimatic Vulnerability of Wetlands to Upwind Land Use Changes
Despite their importance, wetland ecosystems protected by the Ramsar Convention are under pressure from climate change and human activities. These drivers are altering water availability in these wetlands, changing water levels or surface water extent, in some cases, beyond historical variability. Attribution of the effects of human and climate activities is usually focused on changes within the wetlands or their upstream surface and groundwater inputs. However, the reliance of wetland water availability on upwind atmospheric moisture supply is less understood. Here, we assess the vulnerability of 40 Ramsar wetlands to precipitation changes caused by land use and hydroclimatic change occurring in their upwind moisture‐supplying regions. We use moisture flows from a Lagrangian tracking model, atmospheric reanalysis data, and historical land use change (LUC) data to assess and quantify these changes. Our analyses show that historical LUC has decreased precipitation and terrestrial moisture recycling in most wetland hydrological basins, decreasing surface water availability (precipitation minus evaporation). The most substantial effects on wetland water availability occurred in the tropic subtropical regions of Central Europe and Asia. Overall, we found wetlands in Central Asia and South America to be the most vulnerable by a combination of LUC‐driven effects on runoff, high terrestrial precipitation recycling, and recent decreases in surface water availability. This study stresses the need to incorporate upwind effects of land use changes in the restoration, management, and conservation of the world's wetlands. Plain Language Summary Wetlands protected by the Ramsar Convention face threats from climate change and human activities, impacting their water availability and altering wetland functions. While past studies often focused on threats from their immediate surroundings, our research looks into the influence of changes in their upwind atmospheric moisture supply. We evaluate the vulnerability of 40 Ramsar wetland basins to precipitation shifts caused by land use and hydroclimatic changes in upwind regions, using the output of an atmospheric moisture tracking model and historical data. The results indicate that historical land use changes have reduced precipitation and moisture recycling, leading to a decrease in water availability in some wetlands, notably affecting tropical and subtropical regions of Central Europe and Asia. We assess that wetlands in Asia and South America face are vulnerable to a combination of land use‐induced runoff impacts, high precipitation recycling, and declining surface water availability. This study highlights the need to incorporate upwind effects of land use changes in wetland restoration, management, and conservation efforts globally, recognizing their crucial role for effective strategies for wetland protection amidst evolving environmental conditions. Key Points Land use changes have led to mean annual runoff (P–E) decreases in wetland hydrological basins globally The most substantial land use‐related P–E changes occurred in tropical and subtropical wetlands across Asia and South America and in Europe We identify eight wetlands in Asia, South America, and Australia as particularly vulnerable to changes in upwind moisture sources
Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks
Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation–atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss increases nonlinearly with dry-season intensification. We apply a novel complex-network approach, in which Amazon forest patches are linked by observation-based atmospheric water fluxes. Our results suggest that the risk of self-amplified forest loss is reduced with increasing heterogeneity in the response of forest patches to reduced rainfall. Under dry-season Amazonian rainfall reductions, comparable to Last Glacial Maximum conditions, additional forest loss due to self-amplified effects occurs in 10–13% of the Amazon basin. Although our findings do not indicate that the projected rainfall changes for the end of the twenty-first century will lead to complete Amazon dieback, they suggest that frequent extreme drought events have the potential to destabilize large parts of the Amazon forest. Relatively little is understood about seasonal effect of climate change on the Amazon rainforest. Here, the authors show that Amazon forest loss in response to dry-season intensification during the last glacial period was likely self-amplified by regional vegetation-rainfall feedbacks.
Revealing Invisible Water: Moisture Recycling as an Ecosystem Service
An ecosystem service is a benefit derived by humanity that can be traced back to an ecological process. Although ecosystem services related to surface water have been thoroughly described, the relationship between atmospheric water and ecosystem services has been mostly neglected, and perhaps misunderstood. Recent advances in land-atmosphere modeling have revealed the importance of terrestrial ecosystems for moisture recycling. In this paper, we analyze the extent to which vegetation sustains the supply of atmospheric moisture and precipitation for downwind beneficiaries, globally. We simulate land-surface evaporation with a global hydrology model and track changes to moisture recycling using an atmospheric moisture budget model, and we define vegetation-regulated moisture recycling as the difference in moisture recycling between current vegetation and a hypothetical desert world. Our results show that nearly a fifth of annual average precipitation falling on land is from vegetation-regulated moisture recycling, but the global variability is large, with many places receiving nearly half their precipitation from this ecosystem service. The largest potential impacts for changes to this ecosystem service are land-use changes across temperate regions in North America and Russia. Likewise, in semi-arid regions reliant on rainfed agricultural production, land-use change that even modestly reduces evaporation and subsequent precipitation, could significantly affect human well-being. We also present a regional case study in the Mato Grosso region of Brazil, where we identify the specific moisture recycling ecosystem services associated with the vegetation in Mato Grosso. We find that Mato Grosso vegetation regulates some internal precipitation, with a diffuse region of benefit downwind, primarily to the south and east, including the La Plata River basin and the megacities of Sao Paulo and Rio de Janeiro. We synthesize our global and regional results into a generalized framework for describing moisture recycling as an ecosystem service. We conclude that future work ought to disentangle whether and how this vegetation-regulated moisture recycling interacts with other ecosystem services, so that trade-offs can be assessed in a comprehensive and sustainable manner.
Hysteresis of tropical forests in the 21st century
Tropical forests modify the conditions they depend on through feedbacks at different spatial scales. These feedbacks shape the hysteresis (history-dependence) of tropical forests, thus controlling their resilience to deforestation and response to climate change. Here, we determine the emergent hysteresis from local-scale tipping points and regional-scale forest-rainfall feedbacks across the tropics under the recent climate and a severe climate-change scenario. By integrating remote sensing, a global hydrological model, and detailed atmospheric moisture tracking simulations, we find that forest-rainfall feedback expands the geographic range of possible forest distributions, especially in the Amazon. The Amazon forest could partially recover from complete deforestation, but may lose that resilience later this century. The Congo forest currently lacks resilience, but is predicted to gain it under climate change, whereas forests in Australasia are resilient under both current and future climates. Our results show how tropical forests shape their own distributions and create the climatic conditions that enable them. Tropical rainforests partly create their own climatic conditions by promoting precipitation, therefore rainforest losses may trigger dramatic shifts. Here the authors combine remote sensing, hydrological modelling, and atmospheric moisture tracking simulations to assess forest-rainfall feedbacks in three major tropical rainforest regions on Earth and simulate potential changes under a severe climate change scenario.
Rootzone storage capacity reveals drought coping strategies along rainforest-savanna transitions
Climate change and deforestation have increased the risk of drought-induced forest-to-savanna transitions across the tropics and subtropics. However, the present understanding of forest-savanna transitions is generally focused on the influence of rainfall and fire regime changes, but does not take into account the adaptability of vegetation to droughts by utilizing subsoil moisture in a quantifiable metric. Using rootzone storage capacity (Sr), which is a novel metric to represent the vegetation's ability to utilize subsoil moisture storage and tree cover (TC), we analyze and quantify the occurrence of these forest-savanna transitions along transects in South America and Africa. We found forest-savanna transition thresholds to occur around a Sr of 550-750 mm for South America and 400-600 mm for Africa in the range of 30%-40% TC. Analysis of empirical and statistical patterns allowed us to classify the ecosystem's adaptability to droughts into four classes of drought coping strategies: lowly water-stressed forest (shallow roots, high TC), moderately water-stressed forest (investing in Sr, high TC), highly water-stressed forest (trade-off between investments in Sr and TC) and savanna-grassland regime (competitive rooting strategy, low TC). The insights from this study are useful for improved understanding of tropical eco-hydrological adaptation, drought coping strategies, and forest ecosystem regime shifts under future climate change.
Megacity precipitationsheds reveal tele-connected water security challenges
Urbanization is a global process that has taken billions of people from the rural countryside to concentrated urban centers, adding pressure to existing water resources. Many cities are specifically reliant on renewable freshwater regularly refilled by precipitation, rather than fossil groundwater or desalination. A precipitationshed can be considered the \"watershed of the sky\" and identifies the origin of precipitation falling in a given region. In this paper, we use this concept to determine the sources of precipitation that supply renewable water in the watersheds of the largest cities of the world. We quantify the sources of precipitation for 29 megacities and analyze their differences between dry and wet years. Our results reveal that 19 of 29 megacities depend for more than a third of their water supply on evaporation from land. We also show that for many of the megacities, the terrestrial dependence is higher in dry years. This high dependence on terrestrial evaporation for their precipitation exposes these cities to potential land-use change that could reduce the evaporation that generates precipitation. Combining indicators of water stress, moisture recycling exposure, economic capacity, vegetation-regulated evaporation, land-use change, and dry-season moisture recycling sensitivity reveals four highly vulnerable megacities (Karachi, Shanghai, Wuhan, and Chongqing). A further six megacities were found to have medium vulnerability with regard to their water supply. We conclude that understanding how upwind landscapes affect downwind municipal water resources could be a key component for understanding the complexity of urban water security.
Globally widespread and increasing violations of environmental flow envelopes
Human actions and climate change have drastically altered river flows across the world, resulting in adverse effects on riverine ecosystems. Environmental flows (EFs) have emerged as a prominent tool for safeguarding the riverine ecosystems, but at the global scale, the assessment of EFs is associated with high uncertainty related to the hydrological data and EF methods employed. Here, we present a novel, in-depth global EF assessment using environmental flow envelopes (EFEs). Sub-basin-specific EFEs are determined for approximately 4400 sub-basins at a monthly time resolution, and their derivation considers the methodological uncertainties related to global-scale EF studies. In addition to a lower bound of discharge based on existing EF methods, we introduce an upper bound of discharge in the EFE. This upper bound enables areas to be identified where streamflow has substantially increased above natural levels. Further, instead of only showing whether EFs are violated over a time period, we quantify, for the first time, the frequency, severity, and trends of EFE violations during the recent historical period. Discharge was derived from global hydrological model outputs from the ISIMIP 2b ensemble. We use pre-industrial (1801–1860) quasi-natural discharge together with a suite of hydrological EF methods to estimate the EFEs. We then compare the EFEs with recent historical (1976–2005) discharge to assess the violations of the EFE. These violations most commonly manifest as insufficient streamflow during the low-flow season, with fewer violations during the intermediate-flow season, and only a few violations during the high-flow season. The EFE violations are widespread and occur in half of the sub-basins of the world during more than 5 % of the months between 1976 and 2005, which is double compared with the pre-industrial period. The trends in EFE violations have mainly been increasing, which will likely continue in the future with the projected hydroclimatic changes and increases in anthropogenic water use. Indications of increased upper extreme streamflow through EFE upper bound violations are relatively scarce and dispersed. Although local fine-tuning is necessary for practical applications, and further research on the coupling between quantitative discharge and riverine ecosystem responses at the global scale is required, the EFEs provide a quick and globally robust way of determining environmental flow allocations at the sub-basin scale to inform global research and policies on water resources management.
The Potential of Hydrogeodesy to Address Water‐Related and Sustainability Challenges
Increasing climatic and human pressures are changing the world's water resources and hydrological processes at unprecedented rates. Understanding these changes requires comprehensive monitoring of water resources. Hydrogeodesy, the science that measures the Earth's solid and aquatic surfaces, gravity field, and their changes over time, delivers a range of novel monitoring tools that are complementary to traditional hydrological methods. It encompasses geodetic technologies such as Altimetry, Interferometric Synthetic Aperture Radar (InSAR), Gravimetry, and Global Navigation Satellite Systems (GNSS). Beyond quantifying these changes, there is a need to understand how hydrogeodesy can contribute to more ambitious goals dealing with water‐related and sustainability sciences. Addressing this need, we combine a meta‐analysis of over 3,000 articles to chart the range, trends, and applications of satellite‐based hydrogeodesy with an expert elicitation that systematically assesses the potential of hydrogeodesy. We find a growing body of literature relating to the advancements in hydrogeodetic methods, their accuracy and precision, and their inclusion in hydrological modeling, with a considerably smaller portion related to understanding hydrological processes, water management, and sustainability sciences. The meta‐analysis also shows that while lakes, groundwater and glaciers are commonly monitored by these technologies, wetlands or permafrost could benefit from a wider range of applications. In turn, the expert elicitation envisages the potential of hydrogeodesy to help solve the 23 Unsolved Questions of the International Association of Hydrological Sciences and advance knowledge as guidance toward a safe operating space for humanity. It also highlights how this potential can be maximized by combining hydrogeodetic technologies simultaneously, exploiting artificial intelligence, and accurately integrating other Earth science disciplines. Finally, we call for a coordinated way forward to include hydrogeodesy in tertiary education and broaden its application to water‐related and sustainability sciences in order to exploit its full potential. Plain Language Summary Increasing climatic and human pressures are changing the world's water resources and hydrological processes at unprecedented rates. Understanding these changes requires comprehensive monitoring of water resources. Hydrogeodesy, the science that measures the Earth's solid and aquatic surfaces, gravity field, and their changes over time, delivers a range of novel monitoring tools complementary to traditional hydrological methods. It encompasses technologies such as Altimetry, Interferometric Synthetic Aperture Radar (InSAR), Gravimetry, and Global Navigation Satellite Systems (GNSS). Beyond quantifying these changes, we need to understand the potential of hydrogeodesy to contribute to more ambitious goals of water‐related and sustainability sciences. Addressing this need, we combine a meta‐analysis of over 3,000 articles to chart the range, trends, and applications of hydrogeodesy with an expert elicitation that systematically assesses this potential. We find a growing body of literature relating to advancements in hydrogeodetic methods, their accuracy and precision, and their inclusion in hydrological modeling. The expert elicitation envisages the large potential to solve hydrological problems and sustainability challenges. It also highlights how this potential can be maximized by combining several hydrogeodetic technologies, exploiting artificial intelligence, and accurately integrating other Earth science disciplines. Key Points This is a community view on hydrogeodesy, the science that measures the Earth's solid and aquatic surfaces, gravity field, and their changes Hydrogeodesy encompasses geodetic technologies such as Altimetry, Interferometric Synthetic Aperture Radar, Mass gravimetry, and Global Navigation Satellite Systems We study the evolution of hydrogeodesy and its role within current hydrological, sustainability science, and management frameworks