Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
167
result(s) for
"Wanless, Sarah"
Sort by:
Phenological sensitivity to climate across taxa and trophic levels
by
Johns, David G.
,
Høye, Toke T.
,
Sparks, Tim H.
in
631/158/2165/2457
,
631/158/853/2006
,
Analysis
2016
Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms within taxonomic and trophic groups. Despite this variability, we detected systematic variation in the direction and magnitude of phenological climate sensitivity. Secondary consumers showed consistently lower climate sensitivity than other groups. We used mid-century climate change projections to estimate that the timing of phenological events could change more for primary consumers than for species in other trophic levels (6.2 versus 2.5–2.9 days earlier on average), with substantial taxonomic variation (1.1–14.8 days earlier on average).
An ambitious study has used more than 10,000 datasets to examine how the phenological characteristics—such as the timing of reproduction—of various taxa alter in response to climate change, and suggests that differing levels of climate sensitivity could lead to the desynchronization of seasonal events over time.
The shifting biological seasons
Variations in the phenological responses of different species to climate change have fuelled concerns that key species interactions may desynchronize over time, with consequences for ecosystem functioning. Stephen Thackeray
et al
. examine the climate sensitivity of 812 terrestrial and aquatic taxa across the United Kingdom, using more than 10,000 phenological data sets spanning 1960 to 2012, together with temperature and precipitation data. There was a systematic difference in the magnitude and direction of phenological climate sensitivity across trophic levels, despite marked heterogeneity among organisms sharing taxonomic affinities and trophic position. In particular, secondary consumers showed lower levels of climate sensitivity than primary producers and consumers. The authors suggest that the differential sensitivity of phenology to climate across trophic levels could result in the desynchronization of seasonal events in the future.
Journal Article
Breeding density, fine-scale tracking, and large-scale modeling reveal the regional distribution of four seabird species
by
Mavor, Roddy A.
,
Votier, Stephen C.
,
Guilford, Tim
in
Alca torda
,
animal tracking
,
anthropogenic activities
2017
Population-level estimates of species' distributions can reveal fundamental ecological processes and facilitate conservation. However, these may be difficult to obtain for mobile species, especially colonial central-place foragers (CCPFs; e.g., bats, corvids, social insects), because it is often impractical to determine the provenance of individuals observed beyond breeding sites. Moreover, some CCPFs, especially in the marine realm (e.g., pinnipeds, turtles, and seabirds) are difficult to observe because they range tens to ten thousands of kilometers from their colonies. It is hypothesized that the distribution of CCPFs depends largely on habitat availability and intraspecific competition. Modeling these effects may therefore allow distributions to be estimated from samples of individual spatial usage. Such data can be obtained for an increasing number of species using tracking technology. However, techniques for estimating population-level distributions using the telemetry data are poorly developed. This is of concern because many marine CCPFs, such as seabirds, are threatened by anthropogenic activities. Here, we aim to estimate the distribution at sea of four seabird species, foraging from approximately 5,500 breeding sites in Britain and Ireland. To do so, we GPS-tracked a sample of 230 European Shags Phalacrocorax aristotelis, 464 Black-legged Kittiwakes Rissa tridactyla, 178 Common Murres Uria aalge, and 281 Razorbills Alca torda from 13, 20, 12, and 14 colonies, respectively. Using Poisson point process habitat use models, we show that distribution at sea is dependent on (1) density-dependent competition among sympatric conspecifics (all species) and parapatric conspecifics (Kittiwakes and Murres); (2) habitat accessibility and coastal geometry, such that birds travel further from colonies with limited access to the sea; and (3) regional habitat availability. Using these models, we predict space use by birds from unobserved colonies and thereby map the distribution at sea of each species at both the colony and regional level. Space use by all four species' British breeding populations is concentrated in the coastal waters of Scotland, highlighting the need for robust conservation measures in this area. The techniques we present are applicable to any CCPF.
Journal Article
Space Partitioning Without Territoriality in Gannets
by
Bodey, Thomas W.
,
Votier, Stephen C.
,
Bearhop, Stuart
in
Animal and plant ecology
,
Animal behavior
,
Animal ethology
2013
Colonial breeding is widespread among animals. Some, such as eusocial insects, may use agonistic behavior to partition available foraging habitat into mutually exclusive territories; others, such as breeding seabirds, do not. We found that northern gannets, satellite-tracked from 12 neighboring colonies, nonetheless forage in largely mutually exclusive areas and that these colony-specific home ranges are determined by density-dependent competition. This segregation may be enhanced by individual-level public information transfer, leading to cultural evolution and divergence among colonies.
Journal Article
Can Ethograms Be Automatically Generated Using Body Acceleration Data from Free-Ranging Birds?
by
Sato, Katsufumi
,
Takahashi, Akinori
,
Ishizuka, Mayumi
in
Acceleration
,
Accelerometers
,
Algorithms
2009
An ethogram is a catalogue of discrete behaviors typically employed by a species. Traditionally animal behavior has been recorded by observing study individuals directly. However, this approach is difficult, often impossible, in the case of behaviors which occur in remote areas and/or at great depth or altitude. The recent development of increasingly sophisticated, animal-borne data loggers, has started to overcome this problem. Accelerometers are particularly useful in this respect because they can record the dynamic motion of a body in e.g. flight, walking, or swimming. However, classifying behavior using body acceleration characteristics typically requires prior knowledge of the behavior of free-ranging animals. Here, we demonstrate an automated procedure to categorize behavior from body acceleration, together with the release of a user-friendly computer application, \"Ethographer\". We evaluated its performance using longitudinal acceleration data collected from a foot-propelled diving seabird, the European shag, Phalacrocorax aristotelis. The time series data were converted into a spectrum by continuous wavelet transformation. Then, each second of the spectrum was categorized into one of 20 behavior groups by unsupervised cluster analysis, using k-means methods. The typical behaviors extracted were characterized by the periodicities of body acceleration. Each categorized behavior was assumed to correspond to when the bird was on land, in flight, on the sea surface, diving and so on. The behaviors classified by the procedures accorded well with those independently defined from depth profiles. Because our approach is performed by unsupervised computation of the data, it has the potential to detect previously unknown types of behavior and unknown sequences of some behaviors.
Journal Article
Contrasting responses of male and female foraging effort to year‐round wind conditions
2015
There is growing interest in the effects of wind on wild animals, given evidence that wind speeds are increasing and becoming more variable in some regions, particularly at temperate latitudes. Wind may alter movement patterns or foraging ability, with consequences for energy budgets and, ultimately, demographic rates. These effects are expected to vary among individuals due to intrinsic factors such as sex, age or feeding proficiency. Furthermore, this variation is predicted to become more marked as wind conditions deteriorate, which may have profound consequences for population dynamics as the climate changes. However, the interaction between wind and intrinsic effects has not been comprehensively tested. In many species, in particular those showing sexual size dimorphism, males and females vary in foraging performance. Here, we undertook year‐round deployments of data loggers to test for interactions between sex and wind speed and direction on foraging effort in adult European shags Phalacrocorax aristotelis, a pursuit‐diving seabird in which males are c. 18% heavier. We found that foraging time was lower at high wind speeds but higher during easterly (onshore) winds. Furthermore, there was an interaction between sex and wind conditions on foraging effort, such that females foraged for longer than males when winds were of greater strength (9% difference at high wind speeds vs. 1% at low wind speeds) and when winds were easterly compared with westerly (7% and 4% difference, respectively). The results supported our prediction that sex‐specific differences in foraging effort would become more marked as wind conditions worsen. Since foraging time is linked to demographic rates in this species, our findings are likely to have important consequences for population dynamics by amplifying sex‐specific differences in survival rates.
Journal Article
HPAIV outbreak triggers short-term colony connectivity in a seabird metapopulation
by
McCafferty, Dominic J.
,
Matthiopoulos, Jason
,
Jeglinski, Jana W. E.
in
631/158/856
,
631/601/18
,
704/158/1469
2024
Disease outbreaks can drastically disturb the environment of surviving animals, but the behavioural, ecological, and epidemiological consequences of disease-driven disturbance are poorly understood. Here, we show that an outbreak of High Pathogenicity Avian Influenza Virus (HPAIV) coincided with unprecedented short-term behavioural changes in Northern gannets (
Morus bassanus
). Breeding gannets show characteristically strong fidelity to their nest sites and foraging areas (2015–2019; n = 120), but during the 2022 HPAIV outbreak, GPS-tagged gannets instigated long-distance movements beyond well-documented previous ranges and the first ever recorded visits of GPS-tagged adults to other gannet breeding colonies. Our findings suggest that the HPAIV outbreak triggered changes in space use patterns of exposed individuals that amplified the epidemiological connectivity among colonies and may generate super-spreader events that accelerate disease transmission across the metapopulation. Such self-propagating transmission from and towards high density animal aggregations may explain the unexpectedly rapid pan-European spread of HPAIV in the gannet.
Journal Article
From Plankton to Top Predators: Bottom-up Control of a Marine Food Web across Four Trophic Levels
by
Richardson, Anthony J.
,
Nicholas C. Halliday
,
Wanless, Sarah
in
Ammodytes marinus
,
Animal and plant ecology
,
Animal breeding
2006
1. Abundant mid-trophic pelagic fish often play a central role in marine ecosystems, both as links between Zooplankton and top predators and as important fishery targets. In the North Sea, the lesser sandeel occupies this position, being the main prey of many bird, mammal and fish predators and the target of a major industrial fishery. However, since 2003, sandeel landings have decreased by > 50%, and many sandeel-dependent seabirds experienced breeding failures in 2004. 2. Despite the major economic implications, current understanding of the regulation of key constituents of this ecosystem is poor. Sandeel abundance may be regulated 'bottom-up' by food abundance, often thought to be under climatic control, or 'top-down' by natural or fishery predation. We tested predictions from these two hypotheses by combining unique long-term data sets (1973-2003) on seabird breeding productivity from the Isle of May, SE Scotland, and plankton and fish larvae from the Continuous Plankton Recorder survey. We also tested whether seabird breeding productivity was more tightly linked to sandeel biomass or quality (size) of individual fish. 3. The biomass of larval sandeels increased two- to threefold over the study period and was positively associated with proxies of the abundance of their plankton prey. Breeding productivity of four seabirds bringing multiple prey items to their offspring was positively related to sandeel larval biomass with a 1-year lag, indicating dependence on 1-year-old fish, but in one species bringing individual fish it was strongly associated with the size of adult sandeels. 4. These links are consistent with bottom-up ecosystem regulation and, with evidence from previous studies, indicate how climate-driven changes in plankton communities can affect top predators and potentially human fisheries through the dynamics of key mid-trophic fish. However, the failing recruitment to adult sandeel stocks and the exceptionally low seabird breeding productivity in 2004 were not associated with low sandeel larval biomass in 2003, so other mechanisms (e.g. predation, lack of suitable food after metamorphosis) must have been important in this case. Understanding ecosystem regulation is extremely important for predicting the fate of keystone species, such as sandeels, and their predators.
Journal Article
Seasonal interactions in the black-legged kittiwake, Rissa tridactyla: links between breeding performance and winter distribution
by
Daunt, Francis
,
Wanless, Sarah
,
Harris, Michael P.
in
Animal Migration
,
Animals
,
Annual Cycle
2011
Relationships between events in one period of the annual cycle and behaviour in subsequent seasons are key determinants of individual life histories and population dynamics. However, studying such associations is challenging, given the difficulties in following individuals across seasons, particularly in migratory species. Relationships between breeding performance and subsequent winter ecology are particularly poorly understood, yet are likely to be profoundly important because of the costs of reproduction. Using geolocation technology, we show that black-legged kittiwakes that experienced breeding failure left their colony in southeast Scotland earlier than successful breeders. Moreover, a greater proportion of unsuccessful breeders (94% versus 53% successful) travelled over 3000 km to the West Atlantic, whereas fewer visited the East Atlantic (31% versus 80% successful), less than 1000 km from the colony. The two groups did not differ in the timing of return to the colony the following spring. However, 58 per cent of males made a previously undescribed long-distance pre-breeding movement to the central Atlantic. Our results demonstrate important links between reproductive performance and winter distribution, with significant implications for population dynamics. Furthermore, macro-scale segregation associated with breeding outcome is relevant to defining important wintering areas, in particular among declining species experiencing increasingly regular breeding failure.
Journal Article
Energetic synchrony throughout the non‐breeding season in common guillemots from four colonies
by
Bennett, Sophie
,
Harris, Michael P.
,
Furness, Robert W.
in
Animal breeding
,
Anthropogenic changes
,
Anthropogenic factors
2023
The non‐breeding season presents significant energetic challenges to birds that breed in temperate or polar regions, with clear implications for population dynamics. In seabirds, the environmental conditions at non‐breeding sites drive food availability and the energetic cost of regulatory processes, resulting in variation in diet, behaviour and energetics; however, very few studies have attempted to understand if and how these aspects vary between populations. We investigated whether non‐breeding location influenced diet, behaviour and energetics in the common guillemot Uria aalge. We studied guillemots from four UK breeding colonies, two located on the west coast of Scotland and two on the east. We quantified non‐breeding distribution, foraging behaviour and activity budgets of 39 individuals from July to March, using geolocation–immersion loggers and time‐depth recorders, and used feather stable isotope signatures to infer diet during the post‐breeding moult. We calculated energy expenditure and investigated whether the peak (an indicator of the potential vulnerability to marine threats) varied between colonies. Individuals were spatially segregated according to the coastline they breed on, with west coast guillemots distributed off the west coast of the UK and east coast guillemots distributed off the east coast. Diet and behaviour were more similar in guillemots that shared a breeding coastline than those that did not, as west coast guillemots foraged at a lower trophic level, spent less time diving and engaged in more pelagic foraging than east coast guillemots. However, energy expenditure was remarkably similar between colonies, peaking during late February/early March, indicating that, during our study period, there was high synchrony between colonies in the timing of potential vulnerability to marine threats. Therefore, any anthropogenic changes that result in decreased food availability or increased energy expenditure during late winter may have greater impacts on energy balance, with consequences for population dynamics.
Journal Article
Site Fidelity and Individual Variation in Winter Location in Partially Migratory European Shags
by
Grist, Hannah
,
Nelson, Emily J.
,
Burthe, Sarah
in
Animal behavior
,
Animal Migration - physiology
,
Animal reproduction
2014
In partially migratory populations, individuals from a single breeding area experience a range of environments during the non-breeding season. If individuals show high within- and among- year fidelity to specific locations, any annual environmental effect on individual life histories could be reinforced, causing substantial demographic heterogeneity. Quantifying within- and among- individual variation and repeatability in non-breeding season location is therefore key to predicting broad-scale environmental impacts on the dynamics of partially migratory populations. We used field resightings of colour-ringed adult European shags known to have bred on the Isle of May, Scotland, to quantify individual variation and repeatability in winter location within and among three consecutive winters. In total, 3797 resightings of 882 individuals were recorded over 622 km of coastline, including the Isle of May. These individuals comprised over 50% of the known breeding population, and encompassed representative distributions of ages and sexes. The distances from the Isle of May at which individuals were resighted during winter varied substantially, up to 486 km and 136 km north and south respectively and including the breeding colony on the Isle of May. However, resighting distances were highly repeatable within individuals; within- and among-winter repeatabilities were >0.72 and >0.59 respectively across the full September-March observation period, and >0.95 and >0.79 respectively across more restricted mid-winter periods. Repeatability did not differ significantly between males and females or among different age classes, either within or among winters. These data demonstrate that the focal shag population is partially migratory, and moreover that individuals show highly repeatable variation in winter location and hence migration strategy across consecutive winters. Such high among-individual variation and within-individual repeatability, both within and among winters, could lead to substantial life history variation, and therefore influence population dynamics and future conservation management strategies.
Journal Article