Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
56 result(s) for "Wappler, Torsten"
Sort by:
Exceptional preservation of internal organs in a new fossil species of freshwater shrimp (Caridea: Palaemonoidea) from the Eocene of Messel (Germany)
A new species of extinct freshwater shrimp was discovered in the Eocene deposit of the Messel Pit Konservat-Lagerstätte. This rare find is represented by only a few specimens, one of which showing exceptionally preserved soft tissues and other internal parts like the stomach with possibly gastric ossicles in place, branchiae, the ovary, and the left mandible, never described in a fossil shrimp. The new species Bechleja brevirostris n. sp. is characterized by a short rostrum bearing 6–8 dorsal spines and one ventral tooth, and long second pereiopods with strong chelae. One additional specimen shows a slightly different morphology and might belong to a different species. The systematic position of the species among the superfamily Palaemonoidea is discussed, as well as implications for the knowledge of the paleoenvironment of Lake Messel and the paleobiogeography of the Eocene.
An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea)
Phylogenetic relationships among subgroups of cockroaches and termites are still matters of debate. Their divergence times and major phenotypic transitions during evolution are also not yet settled. We addressed these points by combining the first nuclear phylogenomic study of termites and cockroaches with a thorough approach to divergence time analysis, identification of endosymbionts, and reconstruction of ancestral morphological traits and behaviour. Analyses of the phylogenetic relationships within Blattodea robustly confirm previously uncertain hypotheses such as the sister-group relationship between Blaberoidea and remaining Blattodea, and Lamproblatta being the closest relative to the social and wood-feeding Cryptocercus and termites. Consequently, we propose new names for various clades in Blattodea: Cryptocercus + termites = Tutricablattae; Lamproblattidae + Tutricablattae = Kittrickea; and Blattoidea + Corydioidea = Solumblattodea. Our inferred divergence times contradict previous studies by showing that most subgroups of Blattodea evolved in the Cretaceous, reducing the gap between molecular estimates of divergence times and the fossil record. On a phenotypic level, the blattodean ground-plan is for egg packages to be laid directly in a hole while other forms of oviposition, including ovovivipary and vivipary, arose later. Finally, other changes in egg care strategy may have allowed for the adaptation of nest building and other novelties.
Author Correction: Exceptional preservation of internal organs in a new fossil species of freshwater shrimp (Caridea: Palaemonoidea) from the Eocene of Messel (Germany)
de Mazancourt et al. (2022) described a new species of fossil freshwater shrimp, Bechleja brevirostris from the Eocene of Messel (Germany). Although the species is fully characterized and figured in the original description, it was published in an online-only journal issue and the article does not include evidence of registration in ZooBank within the work itself, which is a requirement by Article 8.5.3 of the International Code of Zoological Nomenclature 1. Therefore, the newly proposed species-group name Bechleja brevirostris is not available.
Floral Assemblages and Patterns of Insect Herbivory during the Permian to Triassic of Northeastern Italy
To discern the effect of the end-Permian (P-Tr) ecological crisis on land, interactions between plants and their insect herbivores were examined for four time intervals containing ten major floras from the Dolomites of northeastern Italy during a Permian-Triassic interval. These floras are: (i) the Kungurian Tregiovo Flora; (ii) the Wuchiapingian Bletterbach Flora; (iii) three Anisian floras; and (iv) five Ladinian floras. Derived plant-insect interactional data is based on 4242 plant specimens (1995 Permian, 2247 Triassic) allocated to 86 fossil taxa (32 Permian, 56 Triassic), representing lycophytes, sphenophytes, pteridophytes, pteridosperms, ginkgophytes, cycadophytes and coniferophytes from 37 million-year interval (23 m.yr. Permian, 14 m.yr. Triassic). Major Kungurian herbivorized plants were unaffiliated taxa and pteridosperms; later during the Wuchiapingian cycadophytes were predominantly consumed. For the Anisian, pteridosperms and cycadophytes were preferentially consumed, and subordinately pteridophytes, lycophytes and conifers. Ladinian herbivores overwhelming targeted pteridosperms and subordinately cycadophytes and conifers. Throughout the interval the percentage of insect-damaged leaves in bulk floras, as a proportion of total leaves examined, varied from 3.6% for the Kungurian (N = 464 leaves), 1.95% for the Wuchiapingian (N = 1531), 11.65% for the pooled Anisian (N = 1324), to 10.72% for the pooled Ladinian (N = 923), documenting an overall herbivory rise. The percentage of generalized consumption, equivalent to external foliage feeding, consistently exceeded the level of specialized consumption from internal feeding. Generalized damage ranged from 73.6% (Kungurian) of all feeding damage, to 79% (Wuchiapingian), 65.5% (pooled Anisian) and 73.2% (pooled Ladinian). Generalized-to-specialized ratios show minimal change through the interval, although herbivore component community structure (herbivore species feeding on a single plant-host species) increasingly was partitioned from Wuchiapingian to Ladinian. The Paleozoic plant with the richest herbivore component community, the coniferophyte Pseudovoltzia liebeana, harbored four damage types (DTs), whereas its Triassic parallel, the pteridosperm Scytophyllum bergeri housed 11 DTs, almost four times that of P. liebeana. Although generalized DTs of P. liebeana were similar to S. bergeri, there was expansion of Triassic specialized feeding types, including leaf mining. Permian-Triassic generalized herbivory remained relatively constant, but specialized herbivores more finely partitioned plant-host tissues via new feeding modes, especially in the Anisian. Insect-damaged leaf percentages for Dolomites Kungurian and Wuchiapingian floras were similar to those of lower Permian, north-central Texas, but only one-third that of southeastern Brazil. Global herbivore patterns for Early Triassic plant-insect interactions remain unknown.
Detection of traces of calcium oxalate druses in fossil leaves of angiosperms and gymnosperms from different sites and geological periods
Calcium biomineralization in plants occurs in a variety of patterns such as calcium carbonate cystoliths and calcium oxalate (CaOx) crystals and agglomerates in different forms. CaOx druses and prismatic crystals with sizes between 20–100 µm are found in large amounts in the leaves of many extant plants, in angiosperms particularly in dicotyledons. In gymnosperms, large CaOx druses are often found in Cycadales and Ginkgo along the leaf veins, while most conifers contain microcrystals of <10 µm size in the parenchyma. In plant fossils, patterns of calcium biominerals are rarely reported because they usually disappear during fossilization. Traces of CaOx druses have been reported recently in fossils of dicotyledon plant leaves from Oligocene; here the CaOx was replaced by organic or mineral compounds. But there is still no certain report of CaOx druses traces in Paleozoic or Mesozoic fossils. In the study presented here, granular structures in fossil leaves from different sites across the Devonian to the Neogene were investigated and compared with biomineral patterns in extant leaves of gymnosperm and angiosperm trees. These granular structures resembled patterns of CaOx druses in extant leaves in morphology and distribution and were interpreted as probable casts of CaOx druses. Well-preserved angiosperm fossils from various sites such as seed ferns since Devonian, and Ginkgophytae since Carboniferous all showed such granular traces. The diverse chemical composition of these casts of CaOx druses (e.g., pyrite, iron oxide, organic material, SiO 2 ) depends on fossilization conditions and the chemistry of the surrounding matrix. Good knowledge of the morphology and distribution patterns of biominerals in all relevant plant groups is a basic prerequisite for recognizing their traces in plant fossils. This first extensive study of previously overlooked traces of CaOx druses in plant fossils is a promising step toward a more detailed identification of these fossil microstructures.
An integrative phylogenomic approach to elucidate the evolutionary history and divergence times of Neuropterida (Insecta: Holometabola)
Background The latest advancements in DNA sequencing technologies have facilitated the resolution of the phylogeny of insects, yet parts of the tree of Holometabola remain unresolved. The phylogeny of Neuropterida has been extensively studied, but no strong consensus exists concerning the phylogenetic relationships within the order Neuroptera. Here, we assembled a novel transcriptomic dataset to address previously unresolved issues in the phylogeny of Neuropterida and to infer divergence times within the group. We tested the robustness of our phylogenetic estimates by comparing summary coalescent and concatenation-based phylogenetic approaches and by employing different quartet-based measures of phylogenomic incongruence, combined with data permutations. Results Our results suggest that the order Raphidioptera is sister to Neuroptera + Megaloptera. Coniopterygidae is inferred as sister to all remaining neuropteran families suggesting that larval cryptonephry could be a ground plan feature of Neuroptera. A clade that includes Nevrorthidae, Osmylidae, and Sisyridae (i.e. Osmyloidea) is inferred as sister to all other Neuroptera except Coniopterygidae, and Dilaridae is placed as sister to all remaining neuropteran families. Ithonidae is inferred as the sister group of monophyletic Myrmeleontiformia. The phylogenetic affinities of Chrysopidae and Hemerobiidae were dependent on the data type analyzed, and quartet-based analyses showed only weak support for the placement of Hemerobiidae as sister to Ithonidae + Myrmeleontiformia. Our molecular dating analyses suggest that most families of Neuropterida started to diversify in the Jurassic and our ancestral character state reconstructions suggest a primarily terrestrial environment of the larvae of Neuropterida and Neuroptera. Conclusion Our extensive phylogenomic analyses consolidate several key aspects in the backbone phylogeny of Neuropterida, such as the basal placement of Coniopterygidae within Neuroptera and the monophyly of Osmyloidea. Furthermore, they provide new insights into the timing of diversification of Neuropterida. Despite the vast amount of analyzed molecular data, we found that certain nodes in the tree of Neuroptera are not robustly resolved. Therefore, we emphasize the importance of integrating the results of morphological analyses with those of sequence-based phylogenomics. We also suggest that comparative analyses of genomic meta-characters should be incorporated into future phylogenomic studies of Neuropterida.
Arthropods in amber from the Triassic Period
The occurrence of arthropods in amber exclusively from the Cretaceous and Cenozoic is widely regarded to be a result of the production and preservation of large amounts of tree resin beginning ca. 130 million years (Ma) ago. Abundant 230 million-year-old amber from the Late Triassic (Carnian) of northeastern Italy has previously yielded myriad microorganisms, but we report here that it also preserves arthropods some 100 Ma older than the earliest prior records in amber. The Triassic specimens are a nematoceran fly (Diptera) and two disparate species of mites, Triasacarus fedelei gen. et sp. nov., and Ampezzoa triassica gen. et sp. nov. These mites are the oldest definitive fossils of a group, the Eriophyoidea, which includes the gall mites and comprises at least 3,500 Recent species, 97% of which feed on angiosperms and represents one of the most specialized lineages of phytophagous arthropods. Antiquity of the gall mites in much their extant form was unexpected, particularly with the Triassic species already having many of their present-day features (such as only two pairs of legs); further, it establishes conifer feeding as an ancestral trait. Feeding by the fossil mites may have contributed to the formation of the amber droplets, but we find that the abundance of amber during the Carnian (ca. 230 Ma) is globally anomalous for the pre-Cretaceous and may, alternatively, be related to paleoclimate. Further recovery of arthropods in Carnian-aged amber is promising and will have profound implications for understanding the evolution of terrestrial members of the most diverse phylum of organisms.
Brood care in a 100-million-year-old scale insect
Behavior of extinct organisms can be inferred only indirectly, but occasionally rare fossils document particular behaviors directly. Brood care, a remarkable behavior promoting the survival of the next generation, has evolved independently numerous times among animals including insects. However, fossil evidence of such a complex behavior is exceptionally scarce. Here, we report an ensign scale insect (Hemiptera: Ortheziidae), Wathondara kotejai gen. et sp. nov., from mid-Cretaceous Burmese amber, which preserves eggs within a wax ovisac, and several freshly hatched nymphs. The new fossil is the only Mesozoic record of an adult female scale insect. More importantly, our finding represents the earliest unequivocal direct evidence of brood care in the insect fossil record and demonstrates a remarkably conserved egg-brooding reproductive strategy within scale insects in stasis for nearly 100 million years. Many animals care for and protect their offspring to increase their survival and fitness. Insects care for their young using a range of strategies: some dig underground chambers for their young, whilst others carry their brood around on their own bodies. However, it was unclear when these strategies first evolved in insects. Now Wang et al. report that they have discovered the earliest fossil evidence of an insect caring for its young, in the form of a female insect preserved with her brood in a specimen of ancient amber. The amber comes from northern Myanmar, where amber deposits are around 95–105 million years old. The fossilised insect is an adult female scale insect with a cluster of around 60 eggs on her abdomen. Six young scale insect nymphs are also preserved in the same piece of amber. Wang et al. named this newly discovered species Wathondara kotejai, after an earth goddess in South-East Asian Buddhist mythology and the late Polish entomologist Jan Koteja. Most scale insect fossils found to date have been males. Fossilised adult females are scarcer, most likely because female scale insects are wingless and less mobile and therefore less prone to accidental burial. The fossil reported by Wang et al. is therefore a rare find, and it is also sufficiently well preserved to reveal that the female's eggs are contained within a wax-coated egg sac. Today there are many species of scale insects, most of which are parasites of plants and many are economically important pests of trees and shrubs. In living relatives of W. kotejai, females use a similar wax coating to protect themselves and their offspring: young nymphs hatch inside the egg sac and remain there for a few days before emerging into the outside world. This new fossil provides a unique insight into the anatomy and life cycle of a long-extinct insect; it also demonstrates that brood care in insects is an ancient trait that dates back to at least around 100 million years ago at the height of the age of the dinosaurs.
Marginal leaf galls on Pliocene leaves from India indicate mutualistic behavior between Ipomoea plants and Eriophyidae mites
We report a new type of fossil margin galls arranged in a linear series on dicot leaf impressions from the latest Neogene (Pliocene) sediments of the Chotanagpur Plateau, Jharkhand, eastern India. We collected ca. 1500 impression and compression leaf fossils, of which 1080 samples bear arthropod damage referable to 37 different damage types (DT) in the ‘ Guide to Insect (and Other) Damage Types in Compressed Plant Fossils ’. A few leaf samples identified as Ipomoea L. (Convolvulaceae) have specific margin galls that do not match any galling DT previously described. This type of galling is characterized by small, linearly arranged, irregular, sessile, sub-globose, solitary, indehiscent, solid pouch-galls with irregular ostioles. The probable damage inducers of the present galling of the foliar margin might be members of Eriophyidae (Acari). The new type of gall suggests that marginal gall-inducing mites on leaves of Ipomoea did not change their host preference at the genus level since the Pliocene. The development of marginal leaf galling in Ipomoea is linked to extrafloral nectaries that do not offer protection against arthropod galling but indirectly protect the plant against herbivory from large mammals.
Traces of calcium oxalate biomineralization in fossil leaves from late Oligocene maar deposits from Germany
Calcium oxalate (CaOx) is one of the most common bio-mineral in extant plants and is believed to serve a variety of functions such as calcium storage and herbivore defense. However, traces of CaOx crystals have rarely been identified in fossil plants, and they are primarily known from fossil gymnosperms, where empty cavities of former CaOx crystals or ghost crystals have been reported from leaf cuticles of some Late Cretaceous and Cenozoic conifers. Here we investigate fossil angiosperm leaves from the late Oligocene Rott Fossil Lagerstätte and report ghost crystals of various shapes, sizes and topology (distribution patterns), and cavities. These micromorphological structures of fossil leaves are compared to CaOx deposits in leaves of extant plants: globular structures in fossil leaves resemble CaOx druses (crystal aggregates) in fresh leaves in size and distribution; and angular or brick-shaped structures in the vascular system of fossil leaves closely resemble prismatic CaOx crystals in the vascular system of extant leaves in both size and topology. Chemically, CaOx druses have survived fossilization as cavities only, and were replaced by organic matter and ghost minerals containing Ca, Si, Al, S, and Fe. The identification of former CaOx remains in leaf fossils provides novel insights on the fate of plant bio-minerals during fossilization. More importantly, it provides an additional aspect of the ecophysiology of fossil plants thus improving the accuracy of palaeoecological reconstructions and can provide a broader perspective on the evolution of CaOx and their rule in plant ecology across geological timescales. Alternative interpretations of the fossil microstructures are discussed but ruled out.