Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
55 result(s) for "Wardenaar, Rene"
Sort by:
A living biobank of ovarian cancer ex vivo models reveals profound mitotic heterogeneity
High-grade serous ovarian carcinoma is characterised by TP53 mutation and extensive chromosome instability (CIN). Because our understanding of CIN mechanisms is based largely on analysing established cell lines, we developed a workflow for generating ex vivo cultures from patient biopsies to provide models that support interrogation of CIN mechanisms in cells not extensively cultured in vitro. Here, we describe a “living biobank” of ovarian cancer models with extensive replicative capacity, derived from both ascites and solid biopsies. Fifteen models are characterised by p53 profiling, exome sequencing and transcriptomics, and karyotyped using single-cell whole-genome sequencing. Time-lapse microscopy reveals catastrophic and highly heterogeneous mitoses, suggesting that analysis of established cell lines probably underestimates mitotic dysfunction in advanced human cancers. Drug profiling reveals cisplatin sensitivities consistent with patient responses, demonstrating that this workflow has potential to generate personalized avatars with advantages over current pre-clinical models and the potential to guide clinical decision making. High-grade serous ovarian carcinoma is often associated with TP53 mutation and chromosomal instability (CIN). Here, the authors generate ex vivo cultures from biopsies and ascites of patients and perform characterization to evaluate CIN mechanisms and compare drug sensitivity with patient responses.
Rate, spectrum, and evolutionary dynamics of spontaneous epimutations
Significance Changes in the methylation status of cytosine nucleotides are a source of heritable epigenetic and phenotypic diversity in plants. Here we derive robust estimates of the rate at which cytosine methylation is spontaneously gained (forward epimutation) or lost (backward epimutation) in the genome of the model plant Arabidopsis thaliana . We show that the forward–backward dynamics of selectively neutral epimutations have a major impact on methylome evolution and shape genome-wide patterns of methylation diversity among natural populations in this species. The epimutation rates presented here can serve as reference values in future empirical and theoretical population epigenetic studies in plants. Stochastic changes in cytosine methylation are a source of heritable epigenetic and phenotypic diversity in plants. Using the model plant Arabidopsis thaliana , we derive robust estimates of the rate at which methylation is spontaneously gained (forward epimutation) or lost (backward epimutation) at individual cytosines and construct a comprehensive picture of the epimutation landscape in this species. We demonstrate that the dynamic interplay between forward and backward epimutations is modulated by genomic context and show that subtle contextual differences have profoundly shaped patterns of methylation diversity in A. thaliana natural populations over evolutionary timescales. Theoretical arguments indicate that the epimutation rates reported here are high enough to rapidly uncouple genetic from epigenetic variation, but low enough for new epialleles to sustain long-term selection responses. Our results provide new insights into methylome evolution and its population-level consequences.
Methylome evolution in plants
Despite major progress in dissecting the molecular pathways that control DNA methylation patterns in plants, little is known about the mechanisms that shape plant methylomes over evolutionary time. Drawing on recent intra- and interspecific epigenomic studies, we show that methylome evolution over long timescales is largely a byproduct of genomic changes. By contrast, methylome evolution over short timescales appears to be driven mainly by spontaneous epimutational events. We argue that novel methods based on analyses of the methylation site frequency spectrum (mSFS) of natural populations can provide deeper insights into the evolutionary forces that act at each timescale.
Genetic instability from a single S phase after whole-genome duplication
Diploid and stable karyotypes are associated with health and fitness in animals. By contrast, whole-genome duplications—doublings of the entire complement of chromosomes—are linked to genetic instability and frequently found in human cancers 1 – 3 . It has been established that whole-genome duplications fuel chromosome instability through abnormal mitosis 4 – 8 ; however, the immediate consequences of tetraploidy in the first interphase are not known. This is a key question because single whole-genome duplication events such as cytokinesis failure can promote tumorigenesis 9 and DNA double-strand breaks 10 . Here we find that human cells undergo high rates of DNA damage during DNA replication in the first S phase following induction of tetraploidy. Using DNA combing and single-cell sequencing, we show that DNA replication dynamics is perturbed, generating under- and over-replicated regions. Mechanistically, we find that these defects result from a shortage of proteins during the G1/S transition, which impairs the fidelity of DNA replication. This work shows that within a single interphase, unscheduled tetraploid cells can acquire highly abnormal karyotypes. These findings provide an explanation for the genetic instability landscape that favours tumorigenesis after tetraploidization. Extensive DNA damage occurs during the first interphase following induction of tetraploidy in human cells, largely as a result of the lower amount of protein relative to DNA.
Aneuploidy renders cancer cells vulnerable to mitotic checkpoint inhibition
Selective targeting of aneuploid cells is an attractive strategy for cancer treatment 1 . However, it is unclear whether aneuploidy generates any clinically relevant vulnerabilities in cancer cells. Here we mapped the aneuploidy landscapes of about 1,000 human cancer cell lines, and analysed genetic and chemical perturbation screens 2 – 9 to identify cellular vulnerabilities associated with aneuploidy. We found that aneuploid cancer cells show increased sensitivity to genetic perturbation of core components of the spindle assembly checkpoint (SAC), which ensures the proper segregation of chromosomes during mitosis 10 . Unexpectedly, we also found that aneuploid cancer cells were less sensitive than diploid cells to short-term exposure to multiple SAC inhibitors. Indeed, aneuploid cancer cells became increasingly sensitive to inhibition of SAC over time. Aneuploid cells exhibited aberrant spindle geometry and dynamics, and kept dividing when the SAC was inhibited, resulting in the accumulation of mitotic defects, and in unstable and less-fit karyotypes. Therefore, although aneuploid cancer cells could overcome inhibition of SAC more readily than diploid cells, their long-term proliferation was jeopardized. We identified a specific mitotic kinesin, KIF18A, whose activity was perturbed in aneuploid cancer cells. Aneuploid cancer cells were particularly vulnerable to depletion of KIF18A, and KIF18A overexpression restored their response to SAC inhibition. Our results identify a therapeutically relevant, synthetic lethal interaction between aneuploidy and the SAC. Aneuploid cancer cell lines show increased dependence on the spindle assembly complex (SAC); initially they are resistant to SAC perturbations, but over time they accumulate chromosomal aberrations that impair their fitness.
Short-term molecular consequences of chromosome mis-segregation for genome stability
Chromosome instability (CIN) is the most common form of genome instability and is a hallmark of cancer. CIN invariably leads to aneuploidy, a state of karyotype imbalance. Here, we show that aneuploidy can also trigger CIN. We found that aneuploid cells experience DNA replication stress in their first S-phase and precipitate in a state of continuous CIN. This generates a repertoire of genetically diverse cells with structural chromosomal abnormalities that can either continue proliferating or stop dividing. Cycling aneuploid cells display lower karyotype complexity compared to the arrested ones and increased expression of DNA repair signatures. Interestingly, the same signatures are upregulated in highly-proliferative cancer cells, which might enable them to proliferate despite the disadvantage conferred by aneuploidy-induced CIN. Altogether, our study reveals the short-term origins of CIN following aneuploidy and indicates the aneuploid state of cancer cells as a point mutation-independent source of genome instability, providing an explanation for aneuploidy occurrence in tumors. Chromosomal instability leads to aneuploidy, a state of karyotype imbalance. By inducing controlled chromosome mis-segregation, Santaguida and colleagues show that aneuploidy can also instigate chromosomal instability.
Replication stress generates distinctive landscapes of DNA copy number alterations and chromosome scale losses
Background A major driver of cancer chromosomal instability is replication stress, the slowing or stalling of DNA replication. How replication stress and genomic instability are connected is not known. Aphidicolin-induced replication stress induces breakages at common fragile sites, but the exact causes of fragility are debated, and acute genomic consequences of replication stress are not fully explored. Results We characterize DNA copy number alterations (CNAs) in single, diploid non-transformed cells, caused by one cell cycle in the presence of either aphidicolin or hydroxyurea. Multiple types of CNAs are generated, associated with different genomic regions and features, and observed copy number landscapes are distinct between aphidicolin and hydroxyurea-induced replication stress. Coupling cell type-specific analysis of CNAs to gene expression and single-cell replication timing analyses pinpointed the causative large genes of the most recurrent chromosome-scale CNAs in aphidicolin. These are clustered on chromosome 7 in RPE1 epithelial cells but chromosome 1 in BJ fibroblasts. Chromosome arm level CNAs also generate acentric lagging chromatin and micronuclei containing these chromosomes. Conclusions Chromosomal instability driven by replication stress occurs via focal CNAs and chromosome arm scale changes, with the latter confined to a very small subset of chromosome regions, potentially heavily skewing cancer genome evolution. Different inducers of replication stress lead to distinctive CNA landscapes providing the opportunity to derive copy number signatures of specific replication stress mechanisms. Single-cell CNA analysis thus reveals the impact of replication stress on the genome, providing insights into the molecular mechanisms which fuel chromosomal instability in cancer.
Epigenetic Basis of Morphological Variation and Phenotypic Plasticity in Arabidopsis thaliana
Epigenetics is receiving growing attention in the plant science community. Epigenetic modifications are thought to play a particularly important role in fluctuating environments. It is hypothesized that epigenetics contributes to plant phenotypic plasticity because epigenetic modifications, in contrast to DNA sequence variation, are more likely to be reversible. The population of decrease in DNA methylation 1-2 (ddm1-2)-derived epigenetic recombinant inbred lines (epiRILs) in Arabidopsis thaliana is well suited for studying this hypothesis, as DNA methylation differences are maximized and DNA sequence variation is minimized. Here, we report on the extensive heritable epigenetic variation in plant growth and morphology in neutral and saline conditions detected among the epiRILs. Plant performance, in terms of branching and leaf area, was both reduced and enhanced by different quantitative trait loci (QTLs) in the ddm1-2 inherited epigenotypes. The variation in plasticity associated significantly with certain genomic regions in which the ddm1-2 inherited epigenotypes caused an increased sensitivity to environmental changes, probably due to impaired genetic regulation in the epiRILs. Many of the QTLs for morphology and plasticity overlapped, suggesting major pleiotropic effects. These findings indicate that epigenetics contributes substantially to variation in plant growth, morphology, and plasticity, especially under stress conditions.
Parental DNA Methylation States Are Associated with Heterosis in Epigenetic Hybrids
Despite the importance and wide exploitation of heterosis in commercial crop breeding, the molecular mechanisms behind this phenomenon are not completely understood. Recent studies have implicated changes in DNA methylation and small RNAs in hybrid performance; however, it remains unclear whether epigenetic changes are a cause or a consequence of heterosis. Here, we analyze a large panel of over 500 Arabidopsis (Arabidopsis thaliana) epigenetic hybrid plants (epiHybrids), which we derived from near-isogenic but epigenetically divergent parents. This proof-of-principle experimental system allowed us to quantify the contribution of parental methylation differences to heterosis. We measured traits such as leaf area, growth rate, flowering time, main stem branching, rosette branching, and final plant height and observed several strong positive and negative heterotic phenotypes among the epiHybrids. Using an epigenetic quantitative trait locus mapping approach, we were able to identify specific differentially methylated regions in the parental genomes that are associated with hybrid performance. Sequencing of methylomes, transcriptomes, and genomes of selected parent-epiHybrid combinations further showed that these parental differentially methylated regions most likely mediate the remodeling of methylation and transcriptional states at specific loci in the hybrids. Taken together, our data suggest that locus-specific epigenetic divergence between the parental lines can directly or indirectly trigger heterosis in Arabidopsis hybrids independent of genetic changes. These results add to a growing body of evidence that points to epigenetic factors as one of the key determinants of hybrid performance.
Neoadjuvant immune checkpoint blockade in women with mismatch repair deficient endometrial cancer: a phase I study
Neoadjuvant immune checkpoint blockade (ICB) has shown unprecedented activity in mismatch repair deficient (MMRd) colorectal cancers, but its effectiveness in MMRd endometrial cancer (EC) remains unknown. In this investigator-driven, phase I, feasibility study (NCT04262089), 10 women with MMRd EC of any grade, planned for primary surgery, received two cycles of neoadjuvant pembrolizumab (200 mg IV) every three weeks. A pathologic response (primary objective) was observed in 5/10 patients, with 2 patients showing a major pathologic response. No patient achieved a complete pathologic response. A partial radiologic response (secondary objective) was observed in 3/10 patients, 5/10 patients had stable disease and 2/10 patients were non-evaluable on magnetic resonance imaging. All patients completed treatment without severe toxicity (exploratory objective). At median duration of follow-up of 22.5 months, two non-responders experienced disease recurrence. In-depth analysis of the loco-regional and systemic immune response (predefined exploratory objective) showed that monoclonal T cell expansion significantly correlated with treatment response. Tumour-draining lymph nodes displayed clonal overlap with intra-tumoural T cell expansion. All pre-specified endpoints, efficacy in terms of pathologic response as primary endpoint, radiologic response as secondary outcome and safety and tolerability as exploratory endpoint, were reached. Neoadjuvant ICB with pembrolizumab proved safe and induced pathologic, radiologic, and immunologic responses in MMRd EC, warranting further exploration of extended neoadjuvant treatment. Immune checkpoint blockade (ICB) has shown promising activity in patients with advanced endometrial cancer, however its potential in the context of loco-regional disease remains unclear. Here the authors report the results of a phase I trial of neoadjuvant pembrolizumab (anti-PD1) in patients with mismatch repair deficient resectable endometrial cancer.