Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "Warmer, Felix"
Sort by:
A novel discontinuous-Galerkin deterministic neutronics model for Fusion applications: development and benchmarking
Neutron interactions in a fusion power plant play a pivotal role in determining critical design parameters such as coil-plasma distance and breeding blanket composition. Fast predictive neutronic capabilities are therefore crucial for an efficient design process. For this purpose, we have developed a new deterministic neutronics method, capable of quickly and quickly assessing the neutron response of a fusion reactor, even in three-dimensional geometry. It uses a novel combination of arbitrary-order discontinuous Galerkin spatial discretization, discrete-ordinates angular and multigroup energy discretizations, arbitrary-order anisotropic scattering, and matrix-free iterative solvers, allowing for fast and accurate solutions. One, two, and three-dimensional models are implemented. Cross sections can be obtained from standard databases or from Monte-Carlo simulations. Benchmarks and literature tests were performed, concluding with a successful blanket simulation.
Global gyrokinetic analysis of Wendelstein 7-X discharge: unveiling the importance of trapped-electron-mode and electron-temperature-gradient turbulence
We present the first nonlinear, gyrokinetic, radially global simulation of a discharge of the Wendelstein 7-X-like stellarator (W7-X), including kinetic electrons, an equilibrium radial electric field, as well as electromagnetic and collisional effects. By comparison against flux-tube and full-flux-surface simulations, we assess the impact of the equilibrium ExB-flow and flow shear on the stabilisation of turbulence. In contrast to the existing literature, we further provide substantial evidence for the turbulent electron heat flux being driven by trapped-electron-mode (TEM) and electron-temperature-gradient (ETG) turbulence in the core of the plasma. The former manifests as a hybrid together with ion-temperature-gradient (ITG) turbulence and is primarily driven by the finite electron temperature gradient, which has largely been neglected in nonlinear stellarator simulations presented in the existing literature.