Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
751 result(s) for "Watanabe, Tadashi"
Sort by:
Kaposi’s sarcoma-associated herpesvirus ORF34 is essential for late gene expression and virus production
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. KSHV establishes a life-long infection in its host and alternates between a latent and lytic infection state. During lytic infection, lytic-related genes are expressed in a temporal manner and categorized as immediate early, early, and late gene transcripts. ORF34 is an early-late gene that interacts with several viral transcription-associated factors, however its physiological importance remains poorly understood. Here, we investigated the role of ORF34 during KSHV infection by generating ORF34-deficient KSHV, using a bacterial artificial chromosome system. Our results reveal that ORF34-deficient KSHV exhibited significantly attenuated late gene expression and viral production but did not affect viral DNA replication. ORF34 interacted with transcription factors ORF18, ORF24, ORF31, and ORF66, and a novel ORF34-interaction partner, ORF23. The C-terminal region of ORF34 was important for interaction with ORF24 and viral production. Our data support a model, in which ORF34 serves as a hub for recruiting a viral transcription complex to ORF24 to promote late viral gene expression.
Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus
Neural tube closure is an important and necessary process during the development of the central nervous system. The formation of the neural tube structure from a flat sheet of neural epithelium requires several cell morphogenetic events and tissue dynamics to account for the mechanics of tissue deformation. Cell elongation changes cuboidal cells into columnar cells, and apical constriction then causes them to adopt apically narrow, wedge-like shapes. In addition, the neural plate in Xenopus is stratified, and the non-neural cells in the deep layer (deep cells) pull the overlying superficial cells, eventually bringing the two layers of cells to the midline. Thus, neural tube closure appears to be a complex event in which these three physical events are considered to play key mechanical roles. To test whether these three physical events are mechanically sufficient to drive neural tube formation, we employed a three-dimensional vertex model and used it to simulate the process of neural tube closure. The results suggest that apical constriction cued the bending of the neural plate by pursing the circumference of the apical surface of the neural cells. Neural cell elongation in concert with apical constriction further narrowed the apical surface of the cells and drove the rapid folding of the neural plate, but was insufficient for complete neural tube closure. Migration of the deep cells provided the additional tissue deformation necessary for closure. To validate the model, apical constriction and cell elongation were inhibited in Xenopus laevis embryos. The resulting cell and tissue shapes resembled the corresponding simulation results.
Pax5 mediates the transcriptional activation of the CD81 gene
CD81 is an integral membrane protein of the tetraspanin family and forms complexes with a variety of other cell surface membrane proteins. CD81 is involved in cell migration and B cell activation. However, the mechanism of the transcriptional regulation of the CD81 gene remains unclear. Here, we revealed that CD81 transcriptional activation was required for binding of the transcription factor Pax5 at the Pax5-binding sequence (-54)GCGGGAC(-48) located upstream of the transcriptional start site (TSS) of the CD81 gene. The reporter assay showed that the DNA sequence between − 130 and − 39 bp upstream of the TSS of the CD81 gene had promoter activity for CD81 transcription. The DNA sequence between − 130 and − 39 bp upstream of TSS of CD81 harbors two potential Pax5-binding sequences (-87)GCGTGAG(-81) and (-54)GCGGGAC(-48). Reporter, electrophoresis mobility shift, and chromatin immunoprecipitation (ChIP) assays disclosed that Pax5 bound to the (-54)GCGGGAC(-48) in the promoter region of the CD81 gene in order to activate CD81 transcription. Pax5 overexpression increased the expression level of CD81 protein, while the Pax5-knockdown by shRNA decreased CD81 expression. Moreover, we found that the expression level of CD81 was positively correlated with Pax5 expression in human tumor cell lines. Because CD81 was reported to be involved in cell migration, we evaluated the effects of Pax5 overexpression by wound healing and transwell assays. The data showed that overexpression of either Pax5 or CD81 promoted the epithelial cell migration. Thus, our findings provide insights into the transcriptional mechanism of the CD81 gene through transcription factor Pax5.
MG132 exerts anti-viral activity against HSV-1 by overcoming virus-mediated suppression of the ERK signaling pathway
Herpes simplex virus 1 (HSV-1) causes a number of clinical manifestations including cold sores, keratitis, meningitis and encephalitis. Although current drugs are available to treat HSV-1 infection, they can cause side effects such as nephrotoxicity. Moreover, owing to the emergence of drug-resistant HSV-1 strains, new anti-HSV-1 compounds are needed. Because many viruses exploit cellular host proteases and encode their own viral proteases for survival, we investigated the inhibitory effects of a panel of protease inhibitors (TLCK, TPCK, E64, bortezomib, or MG132) on HSV-1 replication and several host cell signaling pathways. We found that HSV-1 infection suppressed c-Raf-MEK1/2-ERK1/2-p90RSK signaling in host cells, which facilitated viral replication. The mechanism by which HSV-1 inhibited ERK signaling was mediated through the polyubiquitination and proteasomal degradation of Ras-guanine nucleotide-releasing factor 2 (Ras-GRF2). Importantly, the proteasome inhibitor MG132 inhibited HSV-1 replication by reversing ERK suppression in infected cells, inhibiting lytic genes (ICP5, ICP27 and UL42) expression, and overcoming the downregulation of Ras-GRF2. These results indicate that the suppression of ERK signaling via proteasomal degradation of Ras-GRF2 is necessary for HSV-1 infection and replication. Given that ERK activation by MG132 exhibits anti-HSV-1 activity, these results suggest that the proteasome inhibitor could serve as a novel therapeutic agent against HSV-1 infection.
Arctigenin induces the apoptosis of primary effusion lymphoma cells under conditions of glucose deprivation
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of primary effusion lymphoma (PEL) and Kaposi's sarcoma. PEL is a type of non-Hodgkin's B-cell lymphoma, affecting immunosuppressed individuals, such as post-transplant or AIDS patients. However, since PEL is resistant to chemotherapeutic regimens, new effective treatment strategies are required. Arctigenin, a natural lignan compound found in the plant Arctium lappa, has been widely investigated as a potential anticancer agent in the clinical setting. In the present study, we examined the cytotoxic effects of arctigenin by cell viability assay and found that arctigenin markedly inhibited the proliferation of PEL cells compared with KSHV-uninfected B-lymphoma cells under conditions of glucose deprivation. Arctigenin decreased cellular ATP levels, disrupted mitochondrial membrane potential and triggered caspase-9-mediated apoptosis in the glucose-deprived PEL cells. In addition, western blot analysis using phospho-specific antibodies were used to evaluate activity changes in the signaling pathways of interest. As a result, arctigenin suppressed the activation of the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38 MAPK) signaling pathways by inhibiting ERK and p38 MAPK phosphorylation in the glucose-deprived PEL cells. We confirmed that an inhibitor of ERK (U0126) or p38 MAPK (SB202190 and SB203580) suppressed the proliferation of the BC3 PEL cells compared with the KSHV-negative DG75 cells. Moreover, RT-PCR and luciferase reporter assay revealed that arctigenin and p38 MAPK inhibition by SB202190 or SB203580 downregulated the transcriptional expression of unfolded protein response (UPR)-related molecules, including GRP78 and ATF6α under conditions of glucose deprivation. Finally, we confirmed that arctigenin did not affect KSHV replication in PEL cells, suggesting that arctigenin treatment for PEL does not contribute to the risk of de novo KSHV production. These data thus indicate that arctigenin may serve as a lead compound for the development of novel and effective drugs for the treatment of PEL.
Sofosbuvir Suppresses the Genome Replication of DENV1 in Human Hepatic Huh7 Cells
Dengue virus (DENV) causes dengue fever and dengue hemorrhagic fever, and DENV infection kills 20,000 people annually worldwide. Therefore, the development of anti-DENV drugs is urgently needed. Sofosbuvir (SOF) is an effective drug for HCV-related diseases, and its triphosphorylated metabolite inhibits viral RNA synthesis by the RNA-dependent RNA polymerase (RdRp) of HCV. (2′R)-2′-Deoxy-2′-fluoro-2′-methyluridine (FMeU) is the dephosphorylated metabolite produced from SOF. The effects of SOF and FMeU on DENV1 replication were analyzed using two DENV1 replicon-based methods that we previously established. First, a replicon-harboring cell assay showed that DENV1 replicon replication in human hepatic Huh7 cells was decreased by SOF but not by FMeU. Second, a transient replicon assay showed that DENV1 replicon replication in Huh7 cells was decreased by SOF; however, in hamster kidney BHK-21 cells, it was not suppressed by SOF. Additionally, the replicon replication in Huh7 and BHK-21 cells was not affected by FMeU. Moreover, we assessed the effects of SOF on infectious DENV1 production. SOF suppressed infectious DENV1 production in Huh7 cells but not in monkey kidney Vero cells. To examine the substrate recognition of the HCV and DENV1 RdRps, the complex conformation of SOF-containing DENV1 RdRp or HCV RdRp was predicted using AlphaFold 2. These results indicate that SOF may be used as a treatment for DENV1 infection.
KSHV episomes reveal dynamic chromatin loop formation with domain-specific gene regulation
The three-dimensional structure of chromatin organized by genomic loops facilitates RNA polymerase II access to distal promoters. The Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic transcriptional program is initiated by a single viral transactivator, K-Rta. Here we report the KSHV genomic structure and its relationship with K-Rta recruitment sites using Capture Hi–C analyses. High-resolution 3D viral genomic maps identify a number of direct physical, long-range, and dynamic genomic interactions. Mutant KSHV chromosomes harboring point mutations in the K-Rta responsive elements (RE) significantly attenuate not only the directly proximate downstream gene, but also distal gene expression in a domain-specific manner. Genomic loops increase in the presence of K-Rta, while abrogation of K-Rta binding impairs the formation of inducible genomic loops, decreases the expression of genes networked through the looping, and diminishes KSHV replication. Our study demonstrates that genomic architectural dynamics plays an essential role in herpesvirus gene expression. Genomic loops and their temporal dynamics play an important role in gene expression of DNA viruses, but are incompletely understood. Here, the authors use capture Hi-C analyses and identify genomic architectural dynamics of KSHV that are regulated by the viral transactivator K-Rta.
Endoscopic approach via the interhemispheric fissure: the role of an endoscope in a surgical case of multiple falcine lesions
Background For treating a patient with multiple falcine and parasagittal lesions, we believe that it is beneficial to resect the maximum possible number of lesions during one operation, even if some lesions are asymptomatic. This practice can potentially reduce the total number of operations during a patient’s lifetime. Methods We provide an introduction of a concurrent endoscopic approach via the interhemispheric fissure. Conclusions Applying this endoscopic approach concurrently with conventional microscopic surgery can enable the safe resection of as many lesions as possible during one operation.
Feasibility of underwater microvascular decompression for hemifacial spasm: a technical note
Background We present a case series of underwater microvascular decompression (MVD) for hemifacial spasm (HFS) and an evaluation of its feasibility and safety. Methods This retrospective study was conducted at a single institution and included 20 patients with HFS who underwent underwater MVD between September 2019 and January 2021. Surgery was performed in 3 steps, as follows: exoscopic wound opening (soft tissue, bone, dura, and arachnoid around the cerebellomedullary cistern), underwater endoscopic surgery (decompression of the facial nerve), and exoscopic wound closure. In underwater endoscopic surgery, the surgical field was continuously irrigated with artificial cerebrospinal fluid. Abnormal muscle response and brainstem auditory evoked potentials (BAEPs) were monitored. Results Neurovascular conflicts were clearly observed in all patients without fogging and soiling of the endoscope lens. HFS was completely relieved in 19 patients (95%). An amplitude reduction of wave V of BAEPs of more than 50% was not observed in any of the cases. In 5 cases (25%), the latency of wave V of BAEPs was prolonged for more than 1.0 ms; these changes completely or near completely returned to baseline values at dural closure in all 5 cases. A postoperative complication of transient facial palsy was observed in 1 patient (5%) during postoperative days 10–30. There were no other complications. Conclusions Our findings suggest that underwater MVD is a safe and feasible option for the treatment of HFS. However, it did not show advantages over conventional endoscopic MVD when the protective effect on the eighth cranial nerve was evaluated.
Spectroelectrochemical Determination of the Redox Potential of Pheophytin A, the Primary Electron Acceptor in Photosystem II
Thin-layer cell spectroelectrochemistry, featuring rigorous potential control and rapid redox equilibration within the cell, was used to measure the redox potential $E_m (Phea/Phea^ - )$ of pheophytin (Phe) a, the primary electron acceptor in an oxygen-evolving photosystem (PS) II core complex from a thermophilic cyanobacterium Thermosynechococcus elongatus. Interferences from dissolved O₂ and water reductions were minimized by airtight sealing of the sample cell added with dithionite and mercury plating on the gold minigrid working electrode surface, respectively. The result obtained at a physiological pH of 6.5 was $E_m (Phea/Phea^ - ) = - 505 \\pm 6mV$. SHE, which is by ≈100 mV more positive than the values measured ≈30 years ago at nonphysiological pH and widely accepted thereafter in the field of photosynthesis research. Using the P680* -Phe a free energy difference, as estimated from kinetic analyses by previous authors, the present result would locate the $E_m (P680/P680^ + )$ value, which is one of the key parameters but still resists direct measurements, at approximately +1,210 mV. In view of these pieces of information, a renewed diagram is proposed for the energetics in PS II.