Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
971 result(s) for "Watson, Bruce"
Sort by:
The oxidation state of Hadean magmas and implications for early Earth’s atmosphere
Earth's mantle is likely to have reached its present-day oxidation state before 4 billion years ago, according to a determination of the oxidation state of Hadean magmatic melts. On the track of Earth's first atmosphere The composition of Earth's earliest atmosphere, which accumulated more than four billion years ago during the Hadean eon, may have been influenced by magmatic outgassing of volatiles from Earth's interior. This paper reports a redox-sensitive calibration to determine the oxidation state of Hadean magmatic melts based on the incorporation of cerium into zircon crystals. The authors find that the melts have oxygen fugacities that are consistent with the idea that Earth's mantle reached its present-day oxidation state as early as 4.35 billion years ago. The findings suggest that outgassing of Earth's interior about 200 million years into the history of Solar System formation would not have resulted in a reducing atmosphere. Magmatic outgassing of volatiles from Earth’s interior probably played a critical part in determining the composition of the earliest atmosphere, more than 4,000 million years (Myr) ago 1 . Given an elemental inventory of hydrogen, carbon, nitrogen, oxygen and sulphur, the identity of molecular species in gaseous volcanic emanations depends critically on the pressure (fugacity) of oxygen. Reduced melts having oxygen fugacities close to that defined by the iron–wüstite buffer would yield volatile species such as CH 4 , H 2 , H 2 S, NH 3 and CO, whereas melts close to the fayalite–magnetite–quartz buffer would be similar to present-day conditions and would be dominated by H 2 O, CO 2 , SO 2 and N 2 (refs 1 – 4 ). Direct constraints on the oxidation state of terrestrial magmas before 3,850 Myr before present (that is, the Hadean eon) are tenuous because the rock record is sparse or absent. Samples from this earliest period of Earth’s history are limited to igneous detrital zircons that pre-date the known rock record, with ages approaching ∼4,400 Myr (refs 5 – 8 ). Here we report a redox-sensitive calibration to determine the oxidation state of Hadean magmatic melts that is based on the incorporation of cerium into zircon crystals. We find that the melts have average oxygen fugacities that are consistent with an oxidation state defined by the fayalite–magnetite–quartz buffer, similar to present-day conditions. Moreover, selected Hadean zircons (having chemical characteristics consistent with crystallization specifically from mantle-derived melts) suggest oxygen fugacities similar to those of Archaean and present-day mantle-derived lavas 2 , 3 , 4 , 9 , 10 as early as ∼4,350 Myr before present. These results suggest that outgassing of Earth’s interior later than ∼200 Myr into the history of Solar System formation would not have resulted in a reducing atmosphere.
Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with Long COVID/Post-Acute Sequelae of COVID-19 (PASC)
Background Fibrin(ogen) amyloid microclots and platelet hyperactivation previously reported as a novel finding in South African patients with the coronavirus 2019 disease (COVID-19) and Long COVID/Post-Acute Sequelae of COVID-19 (PASC), might form a suitable set of foci for the clinical treatment of the symptoms of Long COVID/PASC. A Long COVID/PASC Registry was subsequently established as an online platform where patients can report Long COVID/PASC symptoms and previous comorbidities. Methods In this study, we report on the comorbidities and persistent symptoms, using data obtained from 845 South African Long COVID/PASC patients. By using a previously published scoring system for fibrin amyloid microclots and platelet pathology, we also analysed blood samples from 80 patients, and report the presence of significant fibrin amyloid microclots and platelet pathology in all cases. Results Hypertension, high cholesterol levels (dyslipidaemia), cardiovascular disease and type 2 diabetes mellitus (T2DM) were found to be the most important comorbidities. The gender balance (70% female) and the most commonly reported Long COVID/PASC symptoms (fatigue, brain fog, loss of concentration and forgetfulness, shortness of breath, as well as joint and muscle pains) were comparable to those reported elsewhere. These findings confirmed that our sample was not atypical. Microclot and platelet pathologies were associated with Long COVID/PASC symptoms that persisted after the recovery from acute COVID-19. Conclusions Fibrin amyloid microclots that block capillaries and inhibit the transport of O 2 to tissues, accompanied by platelet hyperactivation, provide a ready explanation for the symptoms of Long COVID/PASC. Removal and reversal of these underlying endotheliopathies provide an important treatment option that urgently warrants controlled clinical studies to determine efficacy in patients with a diversity of comorbidities impacting on SARS-CoV-2 infection and COVID-19 severity. We suggest that our platelet and clotting grading system provides a simple and cost-effective diagnostic method for early detection of Long COVID/PASC as a major determinant of effective treatment, including those focusing on reducing clot burden and platelet hyperactivation.
Eugene Richards : the run-on of time
The first publication to situate the work of Richards in the long photographic tradition that merges personal artistic vision with documentary practice. Eugene Richards (b. 1944) is a documentary photographer known for his powerful, unflinching exploration of contemporary social issues from the early 1970s to the present. This handsome book is the first comprehensive and critical look at Richards's lifelong achievements. Reproduced in tritone and color, the extraordinary images in this volume explore complicated and controversial subjects, including racism, poverty, drug addiction, cancer, aging, the effects of war and terrorism, and the erosion of rural America. The authors of the book situate Richards's work in the long photographic tradition that merges personal artistic vision with documentary practice, following in the tradition of W. Eugene Smith and Robert Frank.
Structure and Properties of Silica Glass Densified in Cold Compression and Hot Compression
Silica glass has been shown in numerous studies to possess significant capacity for permanent densification under pressure at different temperatures to form high density amorphous (HDA) silica. However, it is unknown to what extent the processes leading to irreversible densification of silica glass in cold-compression at room temperature and in hot-compression (e.g., near glass transition temperature) are common in nature. In this work, a hot-compression technique was used to quench silica glass from high temperature (1100 °C) and high pressure (up to 8 GPa) conditions, which leads to density increase of ~25% and Young’s modulus increase of ~71% relative to that of pristine silica glass at ambient conditions. Our experiments and molecular dynamics (MD) simulations provide solid evidences that the intermediate-range order of the hot-compressed HDA silica is distinct from that of the counterpart cold-compressed at room temperature. This explains the much higher thermal and mechanical stability of the former than the latter upon heating and compression as revealed in our in-situ Brillouin light scattering (BLS) experiments. Our studies demonstrate the limitation of the resulting density as a structural indicator of polyamorphism and point out the importance of temperature during compression in order to fundamentally understand HDA silica.
TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz
Quartz and rutile were synthesized from silica-saturated aqueous fluids between 5 and 20 kbar and from 700 to 940°C in a piston-cylinder apparatus to explore the potential pressure effect on Ti solubility in quartz. A systematic decrease in Ti-in-quartz solubility occurs between 5 and 20 kbar. Titanium K-edge X-ray absorption near-edge structure (XANES) measurements demonstrate that Ti 4+ substitutes for Si 4+ on fourfold tetrahedral sites in quartz at all conditions studied. Molecular dynamic simulations support XANES measurements and demonstrate that Ti incorporation onto fourfold sites is favored over interstitial solubility mechanisms. To account for the P – T dependence of Ti-in-quartz solubility, a least-squares method was used to fit Ti concentrations in quartz from all experiments to the simple expression where R is the gas constant 8.3145 J/K, T is temperature in Kelvin, is the mole fraction of TiO 2 in quartz and is the activity of TiO 2 in the system. The P – T dependencies of Ti-in-quartz solubility can be used as a thermobarometer when used in combination with another thermobarometer in a coexisting mineral, an independent P or T estimate of quartz crystallization, or well-constrained phase equilibria. If temperature can be constrained within ±25°C, pressure can be constrained to approximately ±1.2 kbar. Alternatively, if pressure can be constrained to within ±1 kbar, then temperature can be constrained to approximately ±20°C.
Diffusive fractionation of trace elements in basaltic melt
The chemical diffusivities of 25 trace elements (Sc, V, Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Hf, Ta, Th, and U) in basaltic melt were measured in diffusion couple experiments performed at 1 GPa pressure and temperatures from 1250 to 1500 °C. Trace element concentration gradients developed in the glasses were simultaneously characterized using laser ablation ICP/MS to create an internally consistent data set. A ratio-fitting technique was employed to accurately determine the relative diffusivities of the rare earth elements (REE). All diffusion coefficients conform to the expected Arrhenius relation D  =  D 0 exp(− E a /RT ), where the constant log( D 0 , m 2 /s) ranges from −3.81 to −5.11 and E a ranges from 161.73 to 223.81 kJ/mol. The slowest diffusivities are obtained for the high-field-strength elements; the fastest diffusivities are obtained for the low-field-strength elements. Trace element diffusion in MORB follows the compensation law, where log D 0 is linearly correlated with E a . Arrhenius parameters for diffusion of trivalent REE monotonically increase from La to Lu and are near-linear functions of bond strength (the variation in Arrhenius parameters means that the diffusivities decrease monotonically from La to Lu at a given T ). The new data for trace element diffusion in basaltic melt can be used to explore the potential for diffusive fractionation of trace elements using kinetic models. Concentrations of the slower-diffusing heavy REE may be altered relative to those of the faster-diffusing light REE as a diffusive boundary layer develops in melt–melt and crystal–melt systems. The results indicate that diffusion in basalt can be an effective mechanism to fractionate trace elements from one another.
TitaniQ recrystallized: experimental confirmation of the original Ti-in-quartz calibrations
Several studies have reported the P – T dependencies of Ti-in-quartz solubility, and there is close agreement among three of the four experimental calibrations. New experiments were conducted in the present study to identify potential experimental disequilibrium, and to determine which Ti-in-quartz solubility calibration is most accurate. Crystals of quartz, rutile and zircon were grown from SiO 2 -, TiO 2 -, and ZrSiO 4 -saturated aqueous fluids in an initial synthesis experiment at 925 °C and 10 kbar in a piston-cylinder apparatus. A range of quartz crystal sizes was produced in this experiment; both large and small examples were analyzed by electron microprobe to determine whether Ti concentrations are correlated with crystal size. Cathodoluminescence images and EPMA measurements show that intercrystalline and intracrystalline variations in Ti concentrations are remarkably small regardless of crystal size. The average Ti-in-quartz concentration from the synthesis experiment is 392 ± 1 ppmw Ti, which is within 95 % confidence interval of data from the 10 kbar isobar of Wark and Watson (Contrib Mineral Petrol 152:743–754, 2006 ) and Thomas et al. (Contrib Mineral Petrol 160:743–759, 2010 ). As a cross-check on the Ti-in-quartz calibration, we also measured the concentration of Zr in rutile from the synthesis experiment. The average Zr-in-rutile concentration is 4337 ± 32 ppmw Zr, which is also within the 95 % confidence interval of the Zr-in-rutile solubility calibration of Ferry and Watson (Contrib Mineral Petrol 154:429–437, 2007 ). The P – T dependencies of Ti solubility in quartz and Zr solubility in rutile were applied as a thermobarometer to the experimental sample. The average Ti-in-quartz isopleth calculated from the calibration of Thomas et al. (Contrib Mineral Petrol 160:743–759, 2010 ) and the average Zr-in-rutile isopleth calculated from the calibration of Tomkins et al. (J Metamorph Geol 25:703–713, 2007 ) cross at 9.5 kbar and 920 °C, which is in excellent agreement with the P – T conditions of the synthesis experiment. Separates of the high-Ti quartz from the initial synthesis experiment described above were used as starting material in subsequent experiments at 20 kbar, at which pressure the solubility of Ti in quartz is expected to be significantly lower in the recrystallized quartz. These recrystallization experiments were conducted under wet and dry conditions at 925 °C, and under wet conditions at 850 °C. Both wet and dry recrystallization experiments produced polycrystalline quartzites. Rutile occurs as inclusions in quartz, and as individual crystals dispersed along quartz grain boundaries. Quartz that grew during the recrystallization experiments has dark cathodoluminescence indicating substantially lower Ti concentrations. The average Ti concentrations in quartz from the recrystallization experiments are within the 95 % confidence interval of a linear fit to the 20 kbar data of Thomas et al. (Contrib Mineral Petrol 160:743–759, 2010 ). Collectively, the results from the synthesis and recrystallization experiments confirm that the Ti-in-quartz concentrations used to calibrate the P – T dependencies of Ti-in-quartz solubility in Thomas et al.’s (Contrib Mineral Petrol 160:743–759, 2010 ) calibration represent the equilibrium concentrations of Ti in quartz.