Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
71 result(s) for "Watson, Rachel E. B."
Sort by:
Menopause induces changes to the stratum corneum ceramide profile, which are prevented by hormone replacement therapy
The menopause can lead to epidermal changes that are alleviated by hormone replacement therapy (HRT). We hypothesise that these changes could relate to altered ceramide production, and that oestrogen may have a role in keratinocyte ceramide metabolism. White Caucasian women were recruited into three groups: pre-menopausal (n = 7), post-menopausal (n = 11) and post-menopausal taking HRT (n = 10). Blood samples were assessed for hormone levels, transepidermal water loss was measured to assess skin barrier function, and stratum corneum lipids were sampled from photoprotected buttock skin. Ceramides and sphingomyelins were analysed by ultraperformance liquid chromatography with electrospray ionisation and tandem mass spectrometry. Post-menopausal stratum corneum contained lower levels of ceramides, with shorter average length; changes that were not evident in the HRT group. Serum oestradiol correlated with ceramide abundance and length. Ceramides had shorter sphingoid bases, indicating altered de novo ceramide biosynthesis. Additionally, post-menopausal women had higher sphingomyelin levels, suggesting a possible effect on the hydrolysis pathway. Treatment of primary human keratinocytes with oestradiol (10 nM) increased production of CER[NS] and CER[NDS] ceramides, confirming an effect of oestrogen on cutaneous ceramide metabolism. Taken together, these data show perturbed stratum corneum lipids post-menopause, and a role for oestrogen in ceramide production.
Epigenetics and Ultraviolet Radiation: Implications for Skin Ageing and Carcinogenesis
The accumulation of ultraviolet radiation (UVR)-induced epigenetic changes likely influences the chronic consequences of UVR exposure. In this review, we describe the perturbations in DNA methylation and histone modifications that are observed following short-term and long-term UVR exposure, in both healthy and malignant skin. In addition, we speculate on the underlying biological mechanisms that may direct these changes, as well as how these changes may contribute to skin ageing and carcinogenesis. Abstract Recent published data have highlighted the importance of epigenetics in the response of the skin to recreational and therapeutic ultraviolet radiation (UVR) exposure. ‘Epi’—from the Greek επί, meaning over, outside of or around—relates to the chemical modifications that occur on top of the DNA sequence (for example, DNA methylation) and its associated proteins (e.g. histone modifications, including methylation, acetylation and phosphorylation). These epigenetic processes, collectively called the ‘epigenome’, dictate the three-dimensional conformation of the DNA, thus impacting upon gene expression and genomic stability. Given that epigenetic changes are long-lived and mitotically heritable, an accumulation of epigenetic perturbations likely influence the pathogenesis of the chronic consequences of UVR exposure, including photoageing and skin cancer risk. In this review, we describe the multifarious epigenetic effects elicited by UVR in the skin. We further speculate on the underlying molecular mechanisms that may direct epigenetic changes, such as oxidative stress and changes in metabolism, and their impact on skin health and disease.
Peptide location fingerprinting reveals modification‐associated biomarker candidates of ageing in human tissue proteomes
Although dysfunctional protein homeostasis (proteostasis) is a key factor in many age‐related diseases, the untargeted identification of structurally modified proteins remains challenging. Peptide location fingerprinting is a proteomic analysis technique capable of identifying structural modification‐associated differences in mass spectrometry (MS) data sets of complex biological samples. A new webtool (Manchester Peptide Location Fingerprinter), applied to photoaged and intrinsically aged skin proteomes, can relatively quantify peptides and map statistically significant differences to regions within protein structures. New photoageing biomarker candidates were identified in multiple pathways including extracellular matrix organisation (collagens and proteoglycans), protein synthesis and folding (ribosomal proteins and TRiC complex subunits), cornification (keratins) and hemidesmosome assembly (plectin and integrin α6β4). Crucially, peptide location fingerprinting uniquely identified 120 protein biomarker candidates in the dermis and 71 in the epidermis which were modified as a consequence of photoageing but did not differ significantly in relative abundance (measured by MS1 ion intensity). By applying peptide location fingerprinting to published MS data sets, (identifying biomarker candidates including collagen V and versican in ageing tendon) we demonstrate the potential of the MPLF webtool for biomarker discovery. Peptide location fingerprinting is a proteomic mass spectrometry tool capable of detecting localised statistically significant changes in peptide yield along the structures of proteins in complex, whole tissue lysates. In this study, peptide location fingerprinting revealed novel biomarker candidates of skin photoageing undetectable by conventional relative quantification.
Citric acid is more effective than sodium thiosulfate in chelating calcium in a dissolution model of calcinosis
Calcinosis cutis affects 20–40% of patients with systemic sclerosis. This study tests the hypothesis that calcium-chelating polycarboxylic acids can induce calcium dissolution without skin toxicity or irritancy. We compared citric acid (CA) and ethylenediaminetetraacetic acid (EDTA) to sodium thiosulfate (STS) for their ability to chelate calcium in vitro using a pharmaceutical dissolution model of calcinosis (hydroxyapatite (HAp) tablet), prior to evaluation of toxicity and irritancy in 2D in vitro skin models. Resultant data was used to predict therapeutic concentrations for application in a validated 3D skin irritation model (SkinEthic™; EpiSkin SA) and to assay maximal percutaneous absorption. Dissolution performance was further assessed via ability to dissolve a calcified matrix laid down in vitro. Pharmacological dissolution studies identified that polycarboxylic acids were superior to STS in dissolving HAp tablets. In vitro, compounds had little effect on cell numbers at concentrations of < 10 mM. When applied topically to 3D models as near-saturated solutions, chelators were not irritant nor did they impact model structure histologically. CA was the most efficient chelator of calcium salts. This study highlights polycarboxylic acids, particularly CA, as potential therapies to target calcinosis cutis: these should now be investigated in human studies.
Oral green tea catechin metabolites are incorporated into human skin and protect against UV radiation-induced cutaneous inflammation in association with reduced production of pro-inflammatory eicosanoid 12-hydroxyeicosatetraenoic acid
Green tea catechins (GTC) reduce UV radiation (UVR)-induced inflammation in experimental models, but human studies are scarce and their cutaneous bioavailability and mechanism of photoprotection are unknown. We aimed to examine oral GTC cutaneous uptake, ability to protect human skin against erythema induced by a UVR dose range and impact on potent cyclo-oxygenase- and lipoxygenase-produced mediators of UVR inflammation, PGE2 and 12-hydroxyeicosatetraenoic acid (12-HETE), respectively. In an open oral intervention study, sixteen healthy human subjects (phototype I/II) were given low-dose GTC (540 mg) with vitamin C (50 mg) daily for 12 weeks. Pre- and post-supplementation, the buttock skin was exposed to UVR and the resultant erythema quantified. Skin blister fluid and biopsies were taken from the unexposed and the UVR-exposed skin 24 h after a pro-inflammatory UVR challenge (three minimal erythema doses). Urine, skin tissue and fluid were analysed for catechin content and skin fluid for PGE2 and 12-HETE by liquid chromatography coupled to tandem MS. A total of fourteen completing subjects were supplement compliant (twelve female, median 42·5 years, range 29–59 years). Benzoic acid levels were increased in skin fluid post-supplementation (P= 0·03), and methylated gallic acid and several intact catechins and hydroxyphenyl-valerolactones were detected in the skin tissue and fluid. AUC analysis for UVR erythema revealed reduced response post-GTC (P= 0·037). Pre-supplementation, PGE2 and 12-HETE were UVR induced (P= 0·003, 0·0001). After GTC, UVR-induced 12-HETE reduced from mean 64 (sd 42) to 41 (sd 32) pg/μl (P= 0·01), while PGE2 was unaltered. Thus, GTC intake results in the incorporation of catechin metabolites into human skin associated with abrogated UVR-induced 12-HETE; this may contribute to protection against sunburn inflammation and potentially longer-term UVR-mediated damage.
Morphological Characterisation of Unstained and Intact Tissue Micro-architecture by X-ray Computed Micro- and Nano-Tomography
Characterisation and quantification of tissue structures is limited by sectioning-induced artefacts and by the difficulties of visualising and segmenting 3D volumes. Here we demonstrate that, even in the absence of X-ray contrast agents, X-ray computed microtomography (microCT) and nanotomography (nanoCT) can circumvent these problems by rapidly resolving compositionally discrete 3D tissue regions (such as the collagen-rich adventitia and elastin-rich lamellae in intact rat arteries) which in turn can be segmented due to their different X-ray opacities and morphologies. We then establish, using X-ray tomograms of both unpressurised and pressurised arteries that intra-luminal pressure not only increases lumen cross-sectional area and straightens medial elastic lamellae but also induces profound remodelling of the adventitial layer. Finally we apply microCT to another human organ (skin) to visualise the cell-rich epidermis and extracellular matrix-rich dermis and to show that conventional histological and immunohistochemical staining protocols are compatible with prior X-ray exposure. As a consequence we suggest that microCT could be combined with optical microscopy to characterise the 3D structure and composition of archival paraffin embedded biological materials and of mechanically stressed dynamic tissues such as the heart, lungs and tendons.
A Meeting of Two Chronobiological Systems: Circadian Proteins Period1 and BMAL1 Modulate the Human Hair Cycle Clock
The hair follicle (HF) is a continuously remodeled mini organ that cycles between growth (anagen), regression (catagen), and relative quiescence (telogen). As the anagen-to-catagen transformation of microdissected human scalp HFs can be observed in organ culture, it permits the study of the unknown controls of autonomous, rhythmic tissue remodeling of the HF, which intersects developmental, chronobiological, and growth-regulatory mechanisms. The hypothesis that the peripheral clock system is involved in hair cycle control, i.e., the anagen-to-catagen transformation, was tested. Here we show that in the absence of central clock influences, isolated, organ-cultured human HFs show circadian changes in the gene and protein expression of core clock genes (CLOCK, BMAL1, and Period1) and clock-controlled genes (c-Myc, NR1D1, and CDKN1A), with Period1 expression being hair cycle dependent. Knockdown of either BMAL1 or Period1 in human anagen HFs significantly prolonged anagen. This provides evidence that peripheral core clock genes modulate human HF cycling and are an integral component of the human hair cycle clock. Specifically, our study identifies BMAL1 and Period1 as potential therapeutic targets for modulating human hair growth.
Osmolyte transporter expression is reduced in photoaged human skin: Implications for skin hydration in aging
Aging is characterized by the deterioration of tissue structure and function. In skin, environmental factors, for example, ultraviolet radiation (UVR), can accelerate the effects of aging such as decline in barrier function and subsequent loss of hydration. Water homeostasis is vital for all cellular functions and it is known that organic osmolyte transport is critical to this process. Therefore, we hypothesized that as we age, these tightly controlled physiological mechanisms become disrupted, possibly due to loss of transporter expression. We investigated this in vivo, using human skin samples from photoprotected and photoexposed sites of young and aged volunteers. We show a reduction in keratinocyte cell size with age and a downregulation of osmolyte transporters SMIT and TAUT with both chronic and acute UVR exposure. Single‐cell live imaging demonstrated that aged keratinocytes lack efficient cell volume recovery mechanisms possessed by young keratinocytes following physiological stress. However, addition of exogenous taurine significantly rescued cell volume; this was corroborated by a reduction in TAUT mRNA and protein in aged, as compared to young, keratinocytes. Collectively, these novel data demonstrate that human epidermal keratinocytes possess osmolyte‐mediated cell volume regulatory mechanisms, which may be compromised in aging. Therefore, this suggests that organic osmolytes—especially taurine—play a critical role in cutaneous age‐related xerosis and highlights a fundamental mechanism, vital to our understanding of the pathophysiology of skin aging. Schematic summary of osmolyte‐mediated cell volume response in aging skin. (a) Schematic summary of changes in human skin during intrinsic and extrinsic aging including reduced cell volume of epidermal keratinocytes in vivo, downregulation of osmolyte transporter proteins T AUT and SMIT in vivo, and downregulation of TAUT mRNA and protein in vitro. (b) Schematic summary of the taurine‐mediated improved cell volume regulatory mechanism in an in vitro model of aged epidermal keratinocytes. SMIT, sodium‐coupled myoinositol transporter; T AUT , taurine transporter.
Severely Photosensitive Psoriasis: A Phenotypically Defined Patient Subset
A subset of patients with chronic plaque psoriasis exhibits severely photosensitive psoriasis (PP) with a pronounced seasonal pattern, but the pathomechanism is not understood. We performed two related studies; first, a detailed clinical characterization of PP, and second, a controlled investigation exploring the underlying pathomechanisms through the assessment of disease onset after photoprovocation. Patients with PP (n=20) showed striking female predominance (19F:1M), very low mean age of psoriasis onset (11 years, range 2–24), family history of psoriasis (13/20), a strong HLA–Cw*0602 association (16/17), and a rapid abnormal clinical response to broadband UVA, comprising erythema±scaling plaques (17/20). Subsequently, patients with PP (n=10), non-PP (n=9), and healthy volunteers (n=11) were challenged with low-dose broadband UVA on 3 consecutive days, and serial biopsies were taken after 6hours to 7 days and from unchallenged skin. Histological changes consistent with early psoriasis occurred in 4 of 10 PP patients, but in neither of the control groups, with significant dermal infiltration by neutrophils, CD4+, CD8+, and CD45RO+ cells at 24h, accompanied by acanthosis. Thus, a phenotypically distinct subset of psoriasis has been characterized. In contrast with earlier assumptions, UV can provoke psoriasiform features rapidly de novo; a role for memory effector T cells is supported in the early phase.