Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
189 result(s) for "Watt, Fiona M"
Sort by:
Mammalian skin cell biology: At the interface between laboratory and clinic
Mammalian skin research represents the convergence of three complementary disciplines: cell biology, mouse genetics, and dermatology. The skin provides a paradigm for current research in cell adhesion, inflammation, and tissue stem cells. Here, I discuss recent insights into the cell biology of skin. Single-cell analysis has revealed that human epidermal stem cells are heterogeneous and differentiate in response to multiple extrinsic signals. Live-cell imaging, optogenetics, and cell ablation experiments show skin cells to be remarkably dynamic. High-throughput, genome-wide approaches have yielded unprecedented insights into the circuitry that controls epidermal stem cell fate. Last, integrative biological analysis of human skin disorders has revealed unexpected functions for elements of the skin that were previously considered purely structural.
Modulating the stem cell niche for tissue regeneration
Manipulating the stem cell niche could provide new ways of coaxing stem cells to repair damaged tissues. The field of regenerative medicine holds considerable promise for treating diseases that are currently intractable. Although many researchers are adopting the strategy of cell transplantation for tissue repair, an alternative approach to therapy is to manipulate the stem cell microenvironment, or niche, to facilitate repair by endogenous stem cells. The niche is highly dynamic, with multiple opportunities for intervention. These include administration of small molecules, biologics or biomaterials that target specific aspects of the niche, such as cell-cell and cell–extracellular matrix interactions, to stimulate expansion or differentiation of stem cells, or to cause reversion of differentiated cells to stem cells. Nevertheless, there are several challenges in targeting the niche therapeutically, not least that of achieving specificity of delivery and responses. We envisage that successful treatments in regenerative medicine will involve different combinations of factors to target stem cells and niche cells, applied at different times to effect recovery according to the dynamics of stem cell–niche interactions.
Translational control of stem cell function
Stem cells are characterized by their ability to self-renew and differentiate into many different cell types. Research has focused primarily on how these processes are regulated at a transcriptional level. However, recent studies have indicated that stem cell behaviour is strongly coupled to the regulation of protein synthesis by the ribosome. In this Review, we discuss how different translation mechanisms control the function of adult and embryonic stem cells. Stem cells are characterized by low global translation rates despite high levels of ribosome biogenesis. The maintenance of pluripotency, the commitment to a specific cell fate and the switch to cell differentiation depend on the tight regulation of protein synthesis and ribosome biogenesis. Translation regulatory mechanisms that impact on stem cell function include mTOR signalling, ribosome levels, and mRNA and tRNA features and amounts. Understanding these mechanisms important for stem cell self-renewal and differentiation may also guide our understanding of cancer grade and metastasis.Stem cells are well known to be controlled transcriptionally, but recent studies indicate that pluripotency, cell fate and differentiation depend on the regulation of translation and ribosome biogenesis by mTOR signalling, ribosome levels, and mRNA and tRNA features. Elucidating these stem cell regulatory mechanisms may increase our understanding of tumorigenesis.
Map clusters of diseases to tackle multimorbidity
Many people now have two or more diseases at once. It is time to rethink funding, research, publishing, training and treatment for this growing problem. Many people now have two or more diseases at once. It is time to rethink funding, research, publishing, training and treatment for this growing problem.
Regulation of ERK basal and pulsatile activity control proliferation and exit from the stem cell compartment in mammalian epidermis
Fluctuation in signal transduction pathways is frequently observed during mammalian development. However, its role in regulating stem cells has not been explored. Here we tracked spatiotemporal ERK MAPK dynamics in human epidermal stem cells. While stem cells and differentiated cells were distinguished by high and low stable basal ERK activity, respectively, we also found cells with pulsatile ERK activity. Transitions from Basalhi-Pulselo (stem) to Basalhi-Pulsehi, Basalmid-Pulsehi, and Basallo-Pulselo (differentiated) cells occurred in expanding keratinocyte colonies and in response to differentiation stimuli. Pharmacological inhibition of ERK induced differentiation only when cells were in the Basalmid-Pulsehi state. Basal ERK activity and pulses were differentially regulated by DUSP10 and DUSP6, leading us to speculate that DUSP6- mediated ERK pulse down-regulation promotes initiation of differentiation, whereas DUSP10-mediated down-regulation of mean ERK activity promotes and stabilizes postcommitment differentiation. Levels of MAPK1/MAPK3 transcripts correlated with DUSP6 and DUSP10 transcripts in individual cells, suggesting that ERK activity is negatively regulated by transcriptional and posttranslational mechanisms. When cells were cultured on a topography that mimics the epidermal−dermal interface, spatial segregation of mean ERK activity and pulses was observed. In vivo imaging of mouse epidermis revealed a patterned distribution of basal cells with pulsatile ERK activity, and down-regulation was linked to the onset of differentiation. Our findings demonstrate that ERK MAPK signal fluctuations link kinase activity to stem cell dynamics.
Epithelial stem cells, wound healing and cancer
Key Points Wound healing and tumorigenesis are two processes that rely on similar molecular mechanisms. Repair of tissue injury is a self-limiting process; whereas, tumour formation is characterized by the continuous activation of the pathways involved. The interplay of different cell types, such as epithelial, mesenchymal and immune cells, is of major importance in both wound repair and tumour formation. Changes in the microenvironment caused by tissue injury can permit the development of a tumour. Stem cells contribute to wound healing and tumour formation. In each case, stem cells can adopt a new location that differs from their location in undamaged tissue. Several crucial pathways, such as Hedgehog and WNT signalling, are deregulated in wound healing and tumorigenesis. Deregulated Hedgehog signalling is linked to the development of basal cell carcinoma; whereas, aberrant WNT signalling can result in a variety of epidermal tumours. Non-dividing, differentiating and dying epithelial cells can either positively or negatively influence tumour formation. There are many connections between wound healing and tumorigenesis. Using the epidermis as an example, this Review discusses these connections and how stem cells affect these two processes. It is well established that tissue repair depends on stem cells and that chronic wounds predispose to tumour formation. However, the association between stem cells, wound healing and cancer is poorly understood. Lineage tracing has now shown how stem cells are mobilized to repair skin wounds and how they contribute to skin tumour development. The signalling pathways, including WNT and Hedgehog, that control stem cell behaviour during wound healing are also implicated in tumour formation. Furthermore, tumorigenesis and wound repair both depend on communication between epithelial cells, mesenchymal cells and bone marrow-derived cells. These studies suggest ways to harness stem cells for wound repair while minimizing cancer risk.
Distinct fibroblast lineages determine dermal architecture in skin development and repair
Fibroblasts constitute the major mesenchymal cell type in the connective tissue and their functions are remarkably diverse: here, by characterising lineages of mouse skin fibroblasts, it is shown that distinct subpopulations contribute to skin development and repair during injury. Two fibroblast lineages in skin development and repair Fibroblasts are unremarkable looking cells found in most tissues in the body, where they are mainly concerned with making the collagen that supports other cell types. The cells all look much the same yet are functionally diverse, prompting the question, is there just one cell type responding differently to different stimuli, or do individual cells specialize? A transplantation and lineage tracing study in mice now shows that skin connective tissue arises from two distinct fibroblast lineages that also contribute differentially to skin development and repair after injury. One cell type forms the lower dermis and the other the upper dermis. The latter lineage is required for hair follicle production. In wounded adult skin, the initial wave of dermal repair is mediated by the 'lower' lineage, which may explain the absence of hair follicles in newly closed wounds. The authors develop a comprehensive lineage tree for all fibroblast-derived cell types in mouse dermis, including smooth muscle cells and adipocytes. Fibroblasts are the major mesenchymal cell type in connective tissue and deposit the collagen and elastic fibres of the extracellular matrix (ECM) 1 . Even within a single tissue, fibroblasts exhibit considerable functional diversity, but it is not known whether this reflects the existence of a differentiation hierarchy or is a response to different environmental factors. Here we show, using transplantation assays and lineage tracing in mice, that the fibroblasts of skin connective tissue arise from two distinct lineages. One forms the upper dermis, including the dermal papilla that regulates hair growth and the arrector pili muscle, which controls piloerection. The other forms the lower dermis, including the reticular fibroblasts that synthesize the bulk of the fibrillar ECM, and the preadipocytes and adipocytes of the hypodermis. The upper lineage is required for hair follicle formation. In wounded adult skin, the initial wave of dermal repair is mediated by the lower lineage and upper dermal fibroblasts are recruited only during re-epithelialization. Epidermal β-catenin activation stimulates the expansion of the upper dermal lineage, rendering wounds permissive for hair follicle formation. Our findings explain why wounding is linked to formation of ECM-rich scar tissue that lacks hair follicles 2 , 3 , 4 . They also form a platform for discovering fibroblast lineages in other tissues and for examining fibroblast changes in ageing and disease.
The RNA–Methyltransferase Misu (NSun2) Poises Epidermal Stem Cells to Differentiate
Homeostasis of most adult tissues is maintained by balancing stem cell self-renewal and differentiation, but whether post-transcriptional mechanisms can regulate this process is unknown. Here, we identify that an RNA methyltransferase (Misu/Nsun2) is required to balance stem cell self-renewal and differentiation in skin. In the epidermis, this methyltransferase is found in a defined sub-population of hair follicle stem cells poised to undergo lineage commitment, and its depletion results in enhanced quiescence and aberrant stem cell differentiation. Our results reveal that post-transcriptional RNA methylation can play a previously unappreciated role in controlling stem cell fate.
Epidermal β-catenin activation remodels the dermis via paracrine signalling to distinct fibroblast lineages
Sustained epidermal Wnt/β-catenin signalling expands the stem cell compartment and induces ectopic hair follicles (EFs). This is accompanied by extensive fibroblast proliferation and extracellular matrix (ECM) remodelling in the underlying dermis. Here we show that epidermal Hedgehog (Hh) and Transforming growth factor-beta (TGF-β) signalling mediate the dermal changes. Pharmacological inhibition or genetic deletion of these pathways prevents β-catenin-induced dermal reprogramming and EF formation. Epidermal Shh stimulates proliferation of the papillary fibroblast lineage, whereas TGF-β2 controls proliferation, differentiation and ECM production by reticular fibroblasts. Hh inhibitors do not affect TGF-β target gene expression in reticular fibroblasts, and TGF-β inhibition does not prevent Hh target gene induction in papillary fibroblasts. However, when Hh signalling is inhibited the reticular dermis does not respond to epidermal β-catenin activation. We conclude that the dermal response to epidermal Wnt/β-catenin signalling depends on distinct fibroblast lineages responding to different paracrine signals. The molecular mechanisms regulating skin dermal changes are unclear. Here, the authors show that deletion of Hedgehog (Hh) in the upper dermis alters the response to epidermal Wnt signalling, which, together with changes in extracellular matrix production, influences distinct fibroblast lineages differently.
Fibroblast state switching orchestrates dermal maturation and wound healing
Murine dermis contains functionally and spatially distinct fibroblast lineages that cease to proliferate in early postnatal life. Here, we propose a model in which a negative feedback loop between extracellular matrix (ECM) deposition and fibroblast proliferation determines dermal architecture. Virtual‐tissue simulations of our model faithfully recapitulate dermal maturation, predicting a loss of spatial segregation of fibroblast lineages and dictating that fibroblast migration is only required for wound healing. To test this, we performed in vivo live imaging of dermal fibroblasts, which revealed that homeostatic tissue architecture is achieved without active cell migration. In contrast, both fibroblast proliferation and migration are key determinants of tissue repair following wounding. The results show that tissue‐scale coordination is driven by the interdependence of cell proliferation and ECM deposition, paving the way for identifying new therapeutic strategies to enhance skin regeneration. Synopsis In vivo live imaging of dermal fibroblasts combined with mathematical modeling shows that fibroblast behaviour switching between two distinct states—proliferating and depositing ECM—defines dermal architecture. These findings are relevant for identifying new therapeutic strategies for skin regeneration. Tissue‐scale coordination in murine dermis is driven by the interdependence of cell proliferation and ECM deposition. The tissue architecture is set by a negative feedback loop between ECM deposition/remodelling and proliferation. Fibroblast lineages lose segregation with age. Fibroblast migration is the critical discriminator between dermal development and wound healing. Graphical Abstract In vivo live imaging of dermal fibroblasts combined with mathematical modeling shows that fibroblast behaviour switching between two distinct states—proliferating and depositing ECM—defines dermal architecture. These findings are relevant for identifying new therapeutic strategies for skin regeneration.