Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
104 result(s) for "Watts, Gerald F. M."
Sort by:
Lymphocyte innateness defined by transcriptional states reflects a balance between proliferation and effector functions
How innate T cells (ITC), including invariant natural killer T (iNKT) cells, mucosal-associated invariant T (MAIT) cells, and γδ T cells, maintain a poised effector state has been unclear. Here we address this question using low-input and single-cell RNA-seq of human lymphocyte populations. Unbiased transcriptomic analyses uncover a continuous ‘innateness gradient’, with adaptive T cells at one end, followed by MAIT, iNKT, γδ T and natural killer cells at the other end. Single-cell RNA-seq reveals four broad states of innateness, and heterogeneity within canonical innate and adaptive populations. Transcriptional and functional data show that innateness is characterized by pre-formed mRNA encoding effector functions, but impaired proliferation marked by decreased baseline expression of ribosomal genes. Together, our data shed new light on the poised state of ITC, in which innateness is defined by a transcriptionally-orchestrated trade-off between rapid cell growth and rapid effector function. Innate T cells (ITC) contain many subsets and are poised to promptly respond to antigens and pathogens, but how this poised state is maintained is still unclear. Here the authors perform single-cell RNA-seq to align the various ITC subsets along an ‘innateness gradient’ that is associated with changes in proliferation and effector functions.
Platelets Amplify Inflammation in Arthritis via Collagen-Dependent Microparticle Production
In addition to their pivotal role in thrombosis and wound repair, platelets participate in inflammatory responses. We investigated the role of platelets in the autoimmune disease rheumatoid arthritis. We identified platelet microparticles--submicrometer vesicles elaborated by activated platelets--in joint fluid from patients with rheumatoid arthritis and other forms of inflammatory arthritis, but not in joint fluid from patients with osteoarthritis. Platelet microparticles were proinflammatory, eliciting cytokine responses from synovial fibroblasts via interleukin-1. Consistent with these findings, depletion of platelets attenuated murine inflammatory arthritis. Using both pharmacologic and genetic approaches, we identified the collagen receptor glycoprotein VI as a key trigger for platelet microparticle generation in arthritis pathophysiology. Thus, these findings demonstrate a previously unappreciated role for platelets and their activation-induced microparticles in inflammatory joint diseases.
Cadherin-11 in Synovial Lining Formation and Pathology in Arthritis
The normal synovium forms a membrane at the edges of joints and provides lubrication and nutrients for the cartilage. In rheumatoid arthritis, the synovium is the site of inflammation, and it participates in an organized tissue response that damages cartilage and bone. We identified cadherin-11 as essential for the development of the synovium. Cadherin-11-deficient mice have a hypoplastic synovial lining, display a disorganized synovial reaction to inflammation, and are resistant to inflammatory arthritis. Cadherin-11 therapeutics prevent and reduce arthritis in mouse models. Thus, synovial cadherin-11 determines the behavior of synovial cells in their proinflammatory and destructive tissue response in inflammatory arthritis.
Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry
To define the cell populations that drive joint inflammation in rheumatoid arthritis (RA), we applied single-cell RNA sequencing (scRNA-seq), mass cytometry, bulk RNA sequencing (RNA-seq) and flow cytometry to T cells, B cells, monocytes, and fibroblasts from 51 samples of synovial tissue from patients with RA or osteoarthritis (OA). Utilizing an integrated strategy based on canonical correlation analysis of 5,265 scRNA-seq profiles, we identified 18 unique cell populations. Combining mass cytometry and transcriptomics revealed cell states expanded in RA synovia: THY1(CD90) + HLA-DRA hi sublining fibroblasts, IL1B + pro-inflammatory monocytes, ITGAX + TBX21 + autoimmune-associated B cells and PDCD1 + peripheral helper T (T PH ) cells and follicular helper T (T FH ) cells. We defined distinct subsets of CD8 + T cells characterized by GZMK + , GZMB + , and GNLY + phenotypes. We mapped inflammatory mediators to their source cell populations; for example, we attributed IL6 expression to THY1 + HLA-DRA hi fibroblasts and IL1B production to pro-inflammatory monocytes. These populations are potentially key mediators of RA pathogenesis. Defining cell types and their activation status in rheumatoid arthritis (RA) is critical to understanding this disease. Raychaudhuri and colleagues leverage several single-cell -omics approaches to define the cellular processes and pathways in the human RA joint.
IL-1-driven stromal–neutrophil interactions define a subset of patients with inflammatory bowel disease that does not respond to therapies
Current inflammatory bowel disease (IBD) therapies are ineffective in a high proportion of patients. Combining bulk and single-cell transcriptomics, quantitative histopathology and in situ localization across three cohorts of patients with IBD (total n  = 376), we identify coexpressed gene modules within the heterogeneous tissular inflammatory response in IBD that map to distinct histopathological and cellular features (pathotypes). One of these pathotypes is defined by high neutrophil infiltration, activation of fibroblasts and vascular remodeling at sites of deep ulceration. Activated fibroblasts in the ulcer bed display neutrophil-chemoattractant properties that are IL-1R, but not TNF, dependent. Pathotype-associated neutrophil and fibroblast signatures are increased in nonresponders to several therapies across four independent cohorts (total n  = 343). The identification of distinct, localized, tissular pathotypes will aid precision targeting of current therapeutics and provides a biological rationale for IL-1 signaling blockade in ulcerating disease. Transcriptomic and histological profiling of gut biopsies from multiple independent cohorts of patients with inflammatory bowel disease identifies distinct histopathological, molecular and cellular features associated with treatment response, providing insights for patient stratification and precision therapy.
CUX1 and IκBζ (NFKBIZ) mediate the synergistic inflammatory response to TNF and IL-17A in stromal fibroblasts
The role of stromal fibroblasts in chronic inflammation is unfolding. In rheumatoid arthritis, leukocyte-derived cytokines TNF and IL-17A work together, activating fibroblasts to become a dominant source of the hallmark cytokine IL-6. However, IL-17A alone has minimal effect on fibroblasts. To identify key mediators of the synergistic response to TNF and IL-17A in human synovial fibroblasts, we performed time series, dose–response, and gene-silencing transcriptomics experiments. Here we show that in combination with TNF, IL-17A selectively induces a specific set of genes mediated by factors including cut-like homeobox 1 (CUX1) and IκBζ (NFKBIZ). In the promoters of CXCL1, CXCL2, and CXCL3, we found a putative CUX1–NF-κB binding motif not found elsewhere in the genome. CUX1 and NF-κB p65 mediate transcription of these genes independent of LIFR, STAT3, STAT4, and ELF3. Transcription of NFKBIZ, encoding the atypical IκB factor IκBζ, is IL-17A dose-dependent, and IκBζ only mediates the transcriptional response to TNF and IL-17A, but not to TNF alone. In fibroblasts, IL-17A response depends on CUX1 and IκBζ to engage the NF-κB complex to produce chemoattractants for neutrophil and monocyte recruitment.
Recognition of microbial and mammalian phospholipid antigens by NKT cells with diverse TCRs
CD1d-restricted natural killer T (NKT) cells include two major subgroups. The most widely studied are Vα14Jα18 ⁺ invariant NKT (iNKT) cells that recognize the prototypical α-galactosylceramide antigen, whereas the other major group uses diverse T-cell receptor (TCR) α-and β-chains, does not recognize α-galactosylceramide, and is referred to as diverse NKT (dNKT) cells. dNKT cells play important roles during infection and autoimmunity, but the antigens they recognize remain poorly understood. Here, we identified phosphatidylglycerol (PG), diphosphatidylglycerol (DPG, or cardiolipin), and phosphatidylinositol from Mycobacterium tuberculosis or Corynebacterium glutamicum as microbial antigens that stimulated various dNKT, but not iNKT, hybridomas. dNKT hybridomas showed distinct reactivities for diverse antigens. Stimulation of dNKT hybridomas by microbial PG was independent of Toll-like receptor-mediated signaling by antigen-presenting cells and required lipid uptake and/or processing. Furthermore, microbial PG bound to CD1d molecules and plate-bound PG/CD1d complexes stimulated dNKT hybridomas, indicating direct recognition by the dNKT cell TCR. Interestingly, despite structural differences in acyl chain composition between microbial and mammalian PG and DPG, lipids from both sources stimulated dNKT hybridomas, suggesting that presentation of microbial lipids and enhanced availability of stimulatory self-lipids may both contribute to dNKT cell activation during infection.
Genetic polymorphism directs IL-6 expression in fibroblasts but not selected other cell types
Interleukin (IL)-6 blockade is an effective treatment for rheumatoid arthritis (RA), and synovial fibroblasts are a major IL-6 producer in the inflamed joint. We found that human RA and osteoarthritis (OA) synovial fibroblasts derived from independent donors reproducibly segregated into low, medium, and high IL-6 producers, independent of stimulus, cell passage, or disease state. IL-6 expression pattern correlated strongly with total mRNA expression, not mRNA stability, suggesting transcriptional rather than posttranscriptional regulation. High-fibroblast IL-6 expression was significantly associated with the IL-6 proximal promoter single nucleotide polymorphism (SNP) rs1800795 minor allele (CC) genotype. In contrast, no association between this SNP and IL-6 production was detected in CD14⁺ monocytes, another major producer of synovial IL-6. Luciferase expression assays confirmed that this SNP was associated with differential IL-6 expression in fibroblasts. To date, several association studies examining rs1800795 allele frequency and disease risk have reported seemingly conflicting results ranging from no association to association with either the major or minor allele across a spectrum of conditions, including cancer and autoimmune, cardiovascular, infectious, and metabolic diseases. This study points to a prominent contribution from promoter genetic variation in fibroblast IL-6 regulation, but not in other IL-6–producing cell types. We propose that some of the heterogeneity in these clinical studies likely reflects the cellular source of IL-6 in specific diseases, much of which may be produced by nonhematopoietic cells. These results highlight that functional analysis of disease-associated SNPs on gene expression and pathologic processes must consider variation in diverse cell types.
Evidence for cadherin-11 cleavage in the synovium and partial characterization of its mechanism
Introduction Engagement of the homotypic cell-to-cell adhesion molecule cadherin-11 on rheumatoid arthritis (RA) synovial fibroblasts with a chimeric molecule containing the cadherin-11 extracellular binding domain stimulated cytokine, chemokine, and matrix metalloproteinases (MMP) release, implicating cadherin-11 signaling in RA pathogenesis. The objective of this study was to determine if cadherin-11 extracellular domain fragments are found inside the joint and if a physiologic synovial fibroblast cleavage pathway releases those fragments. Methods Cadherin-11 cleavage fragments were detected by western blot in cell media or lysates. Cleavage was interrupted using chemical inhibitors or short-interfering RNA (siRNA) gene silencing. The amount of cadherin-11 fragments in synovial fluid was measured by western blot and ELISA. Results Soluble cadherin-11 extracellular fragments were detected in human synovial fluid at significantly higher levels in RA samples compared to osteoarthritis (OA) samples. A cadherin-11 N-terminal extracellular binding domain fragment was shed from synovial fibroblasts after ionomycin stimulation, followed by presenilin 1 (PSN1)-dependent regulated intramembrane proteolysis of the retained membrane-bound C-terminal fragments. In addition to ionomycin-induced calcium flux, tumor necrosis factor (TNF)-α also stimulated cleavage in both two- and three-dimensional fibroblast cultures. Although cadherin-11 extracellular domains were shed by a disintegrin and metalloproteinase (ADAM) 10 in several cell types, a novel ADAM- and metalloproteinase-independent activity mediated shedding in primary human fibroblasts. Conclusions Cadherin-11 undergoes ectodomain shedding followed by regulated intramembrane proteolysis in synovial fibroblasts, triggered by a novel sheddase that generates extracelluar cadherin-11 fragments. Cadherin-11 fragments were enriched in RA synovial fluid, suggesting they may be a marker of synovial burden and may function to modify cadherin-11 interactions between synovial fibroblasts.
Activation of iNKT cells by a distinct constituent of the endogenous glucosylceramide fraction
Significance Invariant natural killer T (iNKT) cells are a specialized subset of T cells that recognizes lipids, rather than peptides, as antigens. Recognition of both endogenous and exogenous lipids by iNKT cells contributes to immune responses during infection, cancer, autoimmune disease, and allergic disease. The endogenous lipids recognized by iNKT cells in most contexts, however, remain unclear. In this report, we characterize the lipid antigen activity found in mammalian milk and tissues. Our data suggest that activity is related to a minor component of the glucosylceramide fraction. Whether contributed from endogenous sources or from the diet, this rare, yet potent lipid activity may play an important role in driving immune responses.