Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
770
result(s) for
"Webb, Jeremy S."
Sort by:
Economic significance of biofilms: a multidisciplinary and cross-sectoral challenge
2022
The increasing awareness of the significance of microbial biofilms across different sectors is continuously revealing new areas of opportunity in the development of innovative technologies in translational research, which can address their detrimental effects, as well as exploit their benefits. Due to the extent of sectors affected by microbial biofilms, capturing their real financial impact has been difficult. This perspective highlights this impact globally, based on figures identified in a recent in-depth market analysis commissioned by the UK’s National Biofilms Innovation Centre (NBIC). The outputs from this analysis and the workshops organised by NBIC on its research strategic themes have revealed the breath of opportunities for translational research in microbial biofilms. However, there are still many outstanding scientific and technological challenges which must be addressed in order to catalyse these opportunities. This perspective discusses some of these challenges.
Journal Article
Ultrasound‐mediated therapies for the treatment of biofilms in chronic wounds: a review of present knowledge
by
Glynne‐Jones, Peter
,
Carugo, Dario
,
Webb, Jeremy S
in
Anti-Bacterial Agents - administration & dosage
,
Antibiotics
,
Antimicrobial agents
2020
Summary Bacterial biofilms are an ever‐growing concern for public health, featuring both inherited genetic resistance and a conferred innate tolerance to traditional antibiotic therapies. Consequently, there is a growing interest in novel methods of drug delivery, in order to increase the efficacy of antimicrobial agents. One such method is the use of acoustically activated microbubbles, which undergo volumetric oscillations and collapse upon exposure to an ultrasound field. This facilitates physical perturbation of the biofilm and provides the means to control drug delivery both temporally and spatially. In line with current literature in this area, this review offers a rounded argument for why ultrasound‐responsive agents could be an integral part of advancing wound care. To achieve this, we will outline the development and clinical significance of biofilms in the context of chronic infections. We will then discuss current practices used in combating biofilms in chronic wounds and then critically evaluate the use of acoustically activated gas microbubbles as an emerging treatment modality. Moreover, we will introduce the novel concept of microbubbles carrying biologically active gases that may facilitate biofilm dispersal. This review article discusses current practices used in combating biofilms in chronic wounds, and critically evaluates the use of acoustically activated gas microbubbles as an emerging treatment modality. Moreover, it introduces the novel concept of microbubbles carrying biologically‐active gases that may facilitate biofilm dispersal.
Journal Article
Low-Dose Nitric Oxide as Targeted Anti-biofilm Adjunctive Therapy to Treat Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis
by
Allan, Raymond N.
,
Sukhtankar, Priya S.
,
Daniels, Thomas
in
Adolescent
,
Adult
,
Anti-Bacterial Agents - administration & dosage
2017
Despite aggressive antibiotic therapy, bronchopulmonary colonization by Pseudomonas aeruginosa causes persistent morbidity and mortality in cystic fibrosis (CF). Chronic P. aeruginosa infection in the CF lung is associated with structured, antibiotic-tolerant bacterial aggregates known as biofilms. We have demonstrated the effects of non-bactericidal, low-dose nitric oxide (NO), a signaling molecule that induces biofilm dispersal, as a novel adjunctive therapy for P. aeruginosa biofilm infection in CF in an ex vivo model and a proof-of-concept double-blind clinical trial. Submicromolar NO concentrations alone caused disruption of biofilms within ex vivo CF sputum and a statistically significant decrease in ex vivo biofilm tolerance to tobramycin and tobramycin combined with ceftazidime. In the 12-patient randomized clinical trial, 10 ppm NO inhalation caused significant reduction in P. aeruginosa biofilm aggregates compared with placebo across 7 days of treatment. Our results suggest a benefit of using low-dose NO as adjunctive therapy to enhance the efficacy of antibiotics used to treat acute P. aeruginosa exacerbations in CF. Strategies to induce the disruption of biofilms have the potential to overcome biofilm-associated antibiotic tolerance in CF and other biofilm-related diseases.
This paper reports the first example of targeted anti-biofilm therapy in human disease. We have demonstrated that using low-dose nitric oxide as a non-bactericidal signaling molecule to induce biofilm dispersal may be useful as a novel adjunctive therapy to treat chronic pseudomonal biofilm infection in cystic fibrosis.
Journal Article
The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage
by
Woo, Jerry
,
Mikkelsen, Per Jensen
,
Hauser, Alan
in
Animals
,
Biofilms
,
Biofilms - growth & development
2009
Mature
Pseudomonas aeruginosa
biofilms undergo specific developmental events. Using a bacteriophage mutant, generated by deletion of the entire filamentous Pf4 prophage, we show that the phage is essential for several stages of the biofilm life cycle and that it significantly contributes to the virulence of
P. aeruginosa in vivo
. Here, we show for the first time that biofilms of the Pf4 phage-deficient mutant did not develop hollow centres or undergo cell death, typical of the differentiation process of wild-type (WT)
P. aeruginosa
PAO1 biofilms. Furthermore, microcolonies of the Pf4 mutant were significantly smaller in size and less stable compared with the WT biofilm. Small colony variants (SCVs) were detectable in the dispersal population of the WT biofilm at the time of dispersal and cell death, whereas no SCVs were detected in the effluent of the Pf4 mutant biofilm. This study shows that at the time when cell death occurs in biofilms of the WT, the Pf4 phage converts into a superinfective form, which correlates with the appearance of variants in the dispersal population. Unexpectedly, mice infected with the Pf4 mutant survived significantly longer than those infected with its isogenic WT strain, showing that Pf4 contributes to the virulence of
P. aeruginosa
. Hence, a filamentous prophage is a major contributor to the life cycle and adaptive behaviour of
P. aeruginosa
and offers an explanation for the prevalence of phage in this organism.
Journal Article
Pseudomonas aeruginosa PAO1 Preferentially Grows as Aggregates in Liquid Batch Cultures and Disperses upon Starvation
by
Barraud, Nicolas
,
Webb, Jeremy S.
,
Klebensberger, Janosch
in
Aggregates
,
Analysis
,
Artificial environments
2009
In both natural and artificial environments, bacteria predominantly grow in biofilms, and bacteria often disperse from biofilms as freely suspended single-cells. In the present study, the formation and dispersal of planktonic cellular aggregates, or 'suspended biofilms', by Pseudomonas aeruginosa in liquid batch cultures were closely examined, and compared to biofilm formation on a matrix of polyester (PE) fibers as solid surface in batch cultures. Plankton samples were analyzed by laser-diffraction particle-size scanning (LDA) and microscopy of aggregates. Interestingly, LDA indicated that up to 90% of the total planktonic biomass consisted of cellular aggregates in the size range of 10-400 microm in diameter during the growth phase, as opposed to individual cells. In cultures with PE surfaces, P. aeruginosa preferred to grow in biofilms, as opposed to planktonicly. However, upon carbon, nitrogen or oxygen limitation, the planktonic aggregates and PE-attached biofilms dispersed into single cells, resulting in an increase in optical density (OD) independent of cellular growth. During growth, planktonic aggregates and PE-attached biofilms contained densely packed viable cells and extracellular DNA (eDNA), and starvation resulted in a loss of viable cells, and an increase in dead cells and eDNA. Furthermore, a release of metabolites and infective bacteriophage into the culture supernatant, and a marked decrease in intracellular concentration of the second messenger cyclic di-GMP, was observed in dispersing cultures. Thus, what traditionally has been described as planktonic, individual cell cultures of P. aeruginosa, are in fact suspended biofilms, and such aggregates have behaviors and responses (e.g. dispersal) similar to surface associated biofilms. In addition, we suggest that this planktonic biofilm model system can provide the basis for a detailed analysis of the synchronized biofilm life cycle of P. aeruginosa.
Journal Article
Marine Biofilm Bacteria Evade Eukaryotic Predation by Targeted Chemical Defense
by
Steinberg, Peter
,
Webb, Jeremy S.
,
Schupp, Peter J.
in
Acanthamoeba polyphaga
,
Analysis
,
Antiprotozoal Agents - pharmacology
2008
Many plants and animals are defended from predation or herbivory by inhibitory secondary metabolites, which in the marine environment are very common among sessile organisms. Among bacteria, where there is the greatest metabolic potential, little is known about chemical defenses against bacterivorous consumers. An emerging hypothesis is that sessile bacterial communities organized as biofilms serve as bacterial refuge from predation. By testing growth and survival of two common bacterivorous nanoflagellates, we find evidence that chemically mediated resistance against protozoan predators is common among biofilm populations in a diverse set of marine bacteria. Using bioassay-guided chemical and genetic analysis, we identified one of the most effective antiprotozoal compounds as violacein, an alkaloid that we demonstrate is produced predominately within biofilm cells. Nanomolar concentrations of violacein inhibit protozoan feeding by inducing a conserved eukaryotic cell death program. Such biofilm-specific chemical defenses could contribute to the successful persistence of biofilm bacteria in various environments and provide the ecological and evolutionary context for a number of eukaryote-targeting bacterial metabolites.
Journal Article
Strain-specific parallel evolution drives short-term diversification during Pseudomonas aeruginosa biofilm formation
by
Jerry K. K. Woo
,
Torsten Thomas
,
Janice G. K. Hui
in
Animal populations
,
bacteriophages
,
biofilm
2014
Generation of genetic diversity is a prerequisite for bacterial evolution and adaptation. Short-term diversification and selection within populations is, however, largely uncharacterised, as existing studies typically focus on fixed substitutions. Here, we use whole-genome deep-sequencing to capture the spectrum of mutations arising during biofilm development for two Pseudomonas aeruginosa strains. This approach identified single nucleotide variants with frequencies from 0.5% to 98.0% and showed that the clinical strain 18A exhibits greater genetic diversification than the type strain PA01, despite its lower per base mutation rate. Mutations were found to be strain specific: the mucoid strain 18A experienced mutations in alginate production genes and a c-di-GMP regulator gene; while PA01 acquired mutations in PilT and PilY1 , possibly in response to a rapid expansion of a lytic Pf4 bacteriophage, which may use type IV pili for infection. The Pf4 population diversified with an evolutionary rate of 2.43 × 10 ⁻³ substitutions per site per day, which is comparable to single-stranded RNA viruses. Extensive within-strain parallel evolution, often involving identical nucleotides, was also observed indicating that mutation supply is not limiting, which was contrasted by an almost complete lack of noncoding and synonymous mutations. Taken together, these results suggest that the majority of the P. aeruginosa genome is constrained by negative selection, with strong positive selection acting on an accessory subset of genes that facilitate adaptation to the biofilm lifecycle. Long-term bacterial evolution is known to proceed via few, nonsynonymous, positively selected mutations, and here we show that similar dynamics govern short-term, within-population bacterial diversification.
Journal Article
Bactericidal and anti-biofilm effects of uncharged and cationic ultrasound-responsive nitric oxide microbubbles on Pseudomonas aeruginosa biofilms
by
Campbell, Christopher
,
Keller, Sara B.
,
LuTheryn, Gareth
in
Antibiotics
,
Antimicrobial agents
,
Biofilms
2022
Bacterial biofilms are a major and ongoing concern for public health, featuring both inherited genetic resistance traits and a conferred innate tolerance to traditional antibiotic therapies. Consequently, there is a growing need for novel methods of drug delivery, to increase the efficacy of antimicrobial agents. This research evaluated the anti-biofilm and bactericidal effects of ultrasound responsive gas-microbubbles (MBs) of either air or nitric oxide, using an in vitro Pseudomonas aeruginosa biofilm model grown in artificial wound medium. The four lipid-based MB formulations evaluated were room-air MBs (RAMBs) and nitric oxide MBs (NOMBs) with no electrical charge, as well as cationic (+) RAMBs + and NOMBs + . Two principal treatment conditions were used: i) ultrasound stimulated MBs only, and ii) ultrasound stimulated MBs with a sub-inhibitory concentration (4 µg/mL) of the antibiotic gentamicin. The total treatment time was divided into a 60 second passive MB interaction period prior to 40 second ultrasound exposure; each MB formulation was tested in triplicate. Ultrasound stimulated RAMBs and NOMBs without antibiotic achieved reductions in biofilm biomass of 93.3% and 94.0%, respectively. Their bactericidal efficacy however was limited, with a reduction in culturable cells of 26.9% and 65.3%, respectively. NOMBs with sub-inhibitory antibiotic produced the most significant reduction in biofilm biomass, corresponding to a 99.9% (SD ± 5.21%); and a 99.9% (SD ± 0.07%) (3-log) reduction in culturable bacterial cells. Cationic MBs were initially manufactured to promote binding of MBs to negatively charged biofilms, but these formulations also demonstrated intrinsic bactericidal properties. In the absence of antibiotic, the bactericidal efficacy of RAMB + and NOMB + was greater that of uncharged counterparts, reducing culturable cells by 84.7% and 86.1% respectively; increasing to 99.8% when combined with antibiotic. This study thus demonstrates the anti-biofilm and bactericidal utility of ultrasound stimulated MBs, and specifically is the first to demonstrate the efficacy of a NOMB for the dispersal and potentiation of antibiotics against bacterial biofilms in vitro. Importantly the biofilm system and complex growth-medium were selected to recapitulate key morphological features of in vivo biofilms. The results us offer new insight for the development of new clinical treatments, for example, in chronic wounds.
Journal Article
Nitric oxide-mediated dispersal in single- and multi-species biofilms of clinically and industrially relevant microorganisms
by
Barraud, Nicolas
,
Webb, Jeremy S.
,
Kjelleberg, Staffan
in
Antibiotics
,
Bacteria
,
Bacteria - drug effects
2009
Summary Strategies to induce biofilm dispersal are of interest due to their potential to prevent biofilm formation and biofilm‐related infections. Nitric oxide (NO), an important messenger molecule in biological systems, was previously identified as a signal for dispersal in biofilms of the model organism Pseudomonas aeruginosa. In the present study, the use of NO as an anti‐biofilm agent more broadly was assessed. Various NO donors, at concentrations estimated to generate NO levels in the picomolar and low nanomolar range, were tested on single‐species biofilms of relevant microorganisms and on multi‐species biofilms from water distribution and treatment systems. Nitric oxide‐induced dispersal was observed in all biofilms assessed, and the average reduction of total biofilm surface was 63%. Moreover, biofilms exposed to low doses of NO were more susceptible to antimicrobial treatments than untreated biofilms. For example, the efficacy of conventional chlorine treatments at removing multi‐species biofilms from water systems was increased by 20‐fold in biofilms treated with NO compared with untreated biofilms. These data suggest that combined treatments with NO may allow for novel and improved strategies to control biofilms and have widespread applications in many environmental, industrial and clinical settings.
Journal Article
Role of Mutation in Pseudomonas aeruginosa Biofilm Development
by
Collins, Samuel L.
,
Conibear, Tim C. R.
,
Webb, Jeremy S.
in
Bacteria
,
Base Sequence
,
Biofilms
2009
The survival of bacteria in nature is greatly enhanced by their ability to grow within surface-associated communities called biofilms. Commonly, biofilms generate proliferations of bacterial cells, called microcolonies, which are highly recalcitrant, 3-dimensional foci of bacterial growth. Microcolony growth is initiated by only a subpopulation of bacteria within biofilms, but processes responsible for this differentiation remain poorly understood. Under conditions of crowding and intense competition between bacteria within biofilms, microevolutionary processes such as mutation selection may be important for growth; however their influence on microcolony-based biofilm growth and architecture have not previously been explored. To study mutation in-situ within biofilms, we transformed Pseudomonas aeruginosa cells with a green fluorescent protein gene containing a +1 frameshift mutation. Transformed P. aeruginosa cells were non-fluorescent until a mutation causing reversion to the wildtype sequence occurs. Fluorescence-inducing mutations were observed in microcolony structures, but not in other biofilm cells, or in planktonic cultures of P. aeruginosa cells. Thus microcolonies may represent important foci for mutation and evolution within biofilms. We calculated that microcolony-specific increases in mutation frequency were at least 100-fold compared with planktonically grown cultures. We also observed that mutator phenotypes can enhance microcolony-based growth of P. aeruginosa cells. For P. aeruginosa strains defective in DNA fidelity and error repair, we found that microcolony initiation and growth was enhanced with increased mutation frequency of the organism. We suggest that microcolony-based growth can involve mutation and subsequent selection of mutants better adapted to grow on surfaces within crowded-cell environments. This model for biofilm growth is analogous to mutation selection that occurs during neoplastic progression and tumor development, and may help to explain why structural and genetic heterogeneity are characteristic features of bacterial biofilm populations.
Journal Article