Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
21 result(s) for "Webber, Hannah C"
Sort by:
Silicone oil-induced ocular hypertension and glaucomatous neurodegeneration in mouse
Understanding the molecular mechanism of glaucoma and development of neuroprotectants is significantly hindered by the lack of a reliable animal model that accurately recapitulates human glaucoma. Here, we sought to develop a mouse model for the secondary glaucoma that is often observed in humans after silicone oil (SO) blocks the pupil or migrates into the anterior chamber following vitreoretinal surgery. We observed significant intraocular pressure (IOP) elevation after intracameral injection of SO, and that SO removal allows IOP to return quickly to normal. This simple, inducible and reversible mouse ocular hypertension model shows dynamic changes of visual function that correlate with progressive retinal ganglion cell (RGC) loss and axon degeneration. It may be applicable with only minor modifications to a range of animal species in which it will generate stable, robust IOP elevation and significant neurodegeneration that will facilitate selection of neuroprotectants and investigating the pathogenesis of ocular hypertension-induced glaucoma.
Chronic mild and acute severe glaucomatous neurodegeneration derived from silicone oil-induced ocular hypertension
Recently, we established silicone oil-induced ocular hypertension (SOHU) mouse model with significant glaucomatous neurodegeneration. Here we characterize two additional variations of this model that simulate two distinct glaucoma types. The first is a chronic model produced by high frequency (HF) pupillary dilation after SO-induced pupillary block, which shows sustained moderate IOP elevation and corresponding slow, mild glaucomatous neurodegeneration. We also demonstrate that although SO removal quickly returns IOP to normal, the glaucomatous neurodegeneration continues to advance to a similar degree as in the HF group without SO removal. The second, an acute model created by no pupillary dilation (ND), shows a greatly elevated IOP and severe inner retina degeneration at an early time point. Therefore, by a straightforward dilation scheme, we extend our original SOHU model to recapitulate phenotypes of two major glaucoma forms, which will be invaluable for selecting neuroprotectants and elucidating their molecular mechanisms.
A Comparison of Gene Expression Profiles between Glucocorticoid Responder and Non-Responder Bovine Trabecular Meshwork Cells Using RNA Sequencing
The most common ocular side effect of glucocorticoid (GC) therapy is GC-induced ocular hypertension (OHT) and GC-induced glaucoma (GIG). GC-induced OHT occurs in about 40% of the general population, while the other 60% are resistant. This study aims to determine the genes and pathways involved in differential GC responsiveness in the trabecular meshwork (TM). Using paired bovine eyes, one eye was perfusion-cultured with 100nM dexamethasone (DEX), while the fellow eye was used to establish a bovine TM (BTM) cell strain. Based on maximum IOP change in the perfused eye, the BTM cell strain was identified as a DEX-responder or non-responder strain. Three responder and three non-responder BTM cell strains were cultured, treated with 0.1% ethanol or 100nM DEX for 7 days. RNA and proteins were extracted for RNA sequencing (RNAseq), qPCR, and Western immunoblotting (WB), respectively. Data were analyzed using the human and bovine genome databases as well as Tophat2 software. Genes were grouped and compared using Student's t-test. We found that DEX induced fibronectin expression in responder BTM cells but not in non-responder cells using WB. RNAseq showed between 93 and 606 differentially expressed genes in different expression groups between responder and non-responder BTM cells. The data generated by RNAseq were validated using qPCR. Pathway analyses showed 35 pathways associated with differentially expressed genes. These genes and pathways may play important roles in GC-induced OHT and will help us to better understand differential ocular responsiveness to GCs.
Optineurin-facilitated axonal mitochondria delivery promotes neuroprotection and axon regeneration
Optineurin (OPTN) mutations are linked to amyotrophic lateral sclerosis (ALS) and normal tension glaucoma (NTG), but a relevant animal model is lacking, and the molecular mechanisms underlying neurodegeneration are unknown. We find that OPTN C-terminus truncation (OPTN∆C) causes late-onset neurodegeneration of retinal ganglion cells (RGCs), optic nerve (ON), and spinal cord motor neurons, preceded by a decrease of axonal mitochondria in mice. We discover that OPTN directly interacts with both microtubules and the mitochondrial transport complex TRAK1/KIF5B, stabilizing them for proper anterograde axonal mitochondrial transport, in a C-terminus dependent manner. Furthermore, overexpressing OPTN/TRAK1/KIF5B prevents not only OPTN truncation-induced, but also ocular hypertension-induced neurodegeneration, and promotes robust ON regeneration. Therefore, in addition to generating animal models for NTG and ALS, our results establish OPTN as a facilitator of the microtubule-dependent mitochondrial transport necessary for adequate axonal mitochondria delivery, and its loss as the likely molecular mechanism of neurodegeneration. Optineurin is linked to ALS and glaucoma, but the mechanism is unknown. Here, the authors show that optineurin mutation causes deficits in axonal mitochondria transport and neurodegeneration, enhancing of which achieves axon protection and regeneration.
Delineating the organization of projection neuron subsets in primary visual cortex with multiple fluorescent rabies virus tracing
The impressive functions of the brain rely on an extensive connectivity matrix between specific neurons, the architecture of which is frequently characterized by one brain nucleus/region connecting to multiple targets, either via collaterals of the same projection neuron or several, differentially specified neurons. Delineating the fine architecture of projection neuron subsets in a specific brain region could greatly facilitate its circuit, computational, and functional resolution. Here, we developed multiple fluorescent rabies viruses (RV) to delineate the fine organization of corticothalamic projection neuron subsets in the primary visual cortex (V1). By simultaneously retrograde labeling multiple distinct subsets of corticothalamic projection neurons in V1 from their target nuclei in thalamus (dLGN, LP, LD), we observed that V1-dLGN corticothalamic projection neurons were densely concentrated in layer VI, except for several sparsely scattered neurons in layer V, while V1-LP and V1-LD corticothalamic projection neurons were localized to both layers V and VI. Meanwhile, we observed a fraction of V1 corticothalamic projection neurons targeting two thalamic nuclei, which was further confirmed by fMOST whole-brain imaging. The multiple fluorescent RV tracing tools can be extensively applied to resolve the architecture of projection neuron subsets in certain brain regions, with a strong potential to delineate the computational and functional organization of these brain regions.
Optineurin-facilitated axonal mitochondria delivery promotes neuroprotection and axon regeneration
Optineurin (OPTN) mutations are linked to amyotrophic lateral sclerosis (ALS) and normal tension glaucoma (NTG), but a relevant animal model is lacking, and the molecular mechanisms underlying neurodegeneration are unknown. We found that OPTN C-terminus truncation (OPTN∆C) causes late-onset neurodegeneration of retinal ganglion cells (RGCs), optic nerve (ON), and spinal cord motor neurons, preceded by a striking decrease of axonal mitochondria. Surprisingly, we discover that OPTN directly interacts with both microtubules and the mitochondrial transport complex TRAK1/KIF5B, stabilizing them for proper anterograde axonal mitochondrial transport, in a C-terminus dependent manner. Encouragingly, overexpressing OPTN/TRAK1/KIF5B reverses not only OPTN truncation-induced, but also ocular hypertension-induced neurodegeneration, and promotes striking ON regeneration. Therefore, in addition to generating new animal models for NTG and ALS, our results establish OPTN as a novel facilitator of the microtubule-dependent mitochondrial transport necessary for adequate axonal mitochondria delivery, and its loss as the likely molecular mechanism of neurodegeneration.
The Role of Wnt/β-Catenin Signaling in the Trabecular Meshwork Relating to Ocular Hypertensive Primary Open Angle Glaucoma
Ocular hypertension is the greatest causative risk factor of primary open angle glaucoma (POAG), the most prevalent subset of age-related glaucoma. Wnt signaling antagonist sFRP1 is increased in the trabecular meshwork (TM) of patients with POAG and induces ocular hypertension in human ex vivo eyes and in mice, which is resolved upon downstream Wnt/beta-catenin signaling activation. The molecular mechanisms behind this remain unknown. Beta-catenin plays a role as an accessory protein to classical cadherin cytosolic domains, connecting these cell-cell adhesion proteins to the actin cytoskeleton. In other cell types, Wnt/beta-catenin signaling crosstalks with the TGF-beta/SMAD pathway, which is overactive in the POAG TM and is implicated in ocular hypertension. Our hypothesis is that the Wnt/beta-catenin signaling pathway maintains TM cell adhesion and intraocular pressure by stabilizing cadherins junctions on the TM cell membrane and by inhibiting the POAG-related TGF-beta/SMAD pathway. We used primary or transformed human non-glaucomatous TM (NTM) cells for all molecular and cell-based studies. NTM cells were treated with reporter viruses to study DNA binding element activity, recombinant protein to modulate Wnt/beta-catenin or TGF-beta/SMAD pathways, or siRNA to knockdown pathway mediators or cadherins. After treatment, NTM nucleic acid or protein was isolated or probed for Wnt/beta-catenin or TGF-beta signaling markers or cadherins. Some NTM cells were also plated for Real Time Cell Analysis (RTCA) cell impedance assays. Ad5.CMV recombinant adenoviruses encoding K-cadherin and/or sFRP1 were injected into BALB/cJ mouse eyes. Conscious IOP was assessed for up to 35 days. We found that Wnt/beta-catenin signaling cross-inhibits TGF-beta signaling in a beta-catenin and Smad4-dependent manner. This cross-inhibition resulted in a decreased K-cadherin and fibronectin expression. Wnt/beta-catenin signaling also enhanced mRNA, protein, and membrane-bound levels of K-cadherin, the most highly expressed cadherin isoform in the TM. In vivo, K-cadherin reduced the ocular hypertensive effects of sFRP1. RTCA assays showed that Wnt/beta-catenin signaling and K-cadherin are responsible for maintenance of TM cell adhesion. Wnt/beta-catenin signaling is responsible for intraocular pressure maintenance through increased expression of K-cadherin-mediated TM cell adhesion and through inhibition of TGF-beta/SMAD signaling.
Delineating the Organization of Projection Neuron Subsets with Multi-fluorescent Rabies Virus Tracing Tool
The elegant functions of the brain are facilitated by sophisticated connections between neurons, the architecture of which is frequently characterized by one nucleus connecting to multiple targets via projection neurons. Delineating the sub-nucleus fine architecture of projection neurons in a certain nucleus could greatly facilitate its circuit, computational, and functional resolution. Here, we developed multi-fluorescent rabies virus to delineate the fine organization of corticothalamic projection neuron subsets in the primary visual cortex (V1). By simultaneously labeling multiple distinct subsets of corticothalamic projection neurons in V1 from their target nuclei in thalamus (dLGN, LP, LD), we observed that V1-dLGN corticothalamic neurons were densely concentrated in layer VI, except for several sparsely scattered neurons in layer V, while V1-LP and V1-LD corticothalamic neurons were localized to both layers V and VI. Meanwhile, we observed a fraction of V1 corticothalamic neurons targeting multiple thalamic nuclei, which was further confirmed by fMOST whole-brain imaging. We further conceptually proposed an upgraded sub-nucleus tracing system with higher throughput (21 subsets) for more complex architectural tracing. The multi-fluorescent RV tracing tool can be extensively applied to resolve architecture of projection neuron subsets, with a strong potential to delineate the computational and functional organization of these nuclei.
Silicone oil-induced ocular hypertension in mouse models glaucomatous neurodegeneration and neuroprotection
Understanding the molecular mechanism of glaucoma and development of neuroprotectants are significantly hindered by the lack of a reliable animal model that accurately recapitulates human glaucoma. Here we sought to develop a mouse model for the secondary glaucoma that is often observed in humans after silicone oil (SO) blocks the pupil or migrates into the anterior chamber following vitreoretinal surgery. We observed similar intraocular pressure (IOP) elevation after intracameral injection into mouse eyes of SO, and removing the SO allows the IOP level to quickly return to normal. This simple, inducible and reversible mouse model showed dynamic changes of visual function that correlate with progressive RGC loss and axon degeneration. We also used a single AAV vector for the first time to co-express miRNA-based shRNA and a neuroprotective transgene and further validated this model as an effective in vivo means to test neuroprotective therapies by targeting neuronal endoplasmic reticulum stress.
Bioactive glycans in a microbiome-directed food for children with malnutrition
Evidence is accumulating that perturbed postnatal development of the gut microbiome contributes to childhood malnutrition 1 – 4 . Here we analyse biospecimens from a randomized, controlled trial of a microbiome-directed complementary food (MDCF-2) that produced superior rates of weight gain compared with a calorically more dense conventional ready-to-use supplementary food in 12–18-month-old Bangladeshi children with moderate acute malnutrition 4 . We reconstructed 1,000 bacterial genomes (metagenome-assembled genomes (MAGs)) from the faecal microbiomes of trial participants, identified 75 MAGs of which the abundances were positively associated with ponderal growth (change in weight-for-length Z score (WLZ)), characterized changes in MAG gene expression as a function of treatment type and WLZ response, and quantified carbohydrate structures in MDCF-2 and faeces. The results reveal that two Prevotella copri MAGs that are positively associated with WLZ are the principal contributors to MDCF-2-induced expression of metabolic pathways involved in utilizing the component glycans of MDCF-2. The predicted specificities of carbohydrate-active enzymes expressed by their polysaccharide-utilization loci are correlated with (1) the in vitro growth of Bangladeshi P. copri strains, possessing varying degrees of polysaccharide-utilization loci and genomic conservation with these MAGs, in defined medium containing different purified glycans representative of those in MDCF-2, and (2) the levels of faecal carbohydrate structures in the trial participants. These associations suggest that identifying bioactive glycan structures in MDCFs metabolized by growth-associated bacterial taxa will help to guide recommendations about their use in children with acute malnutrition and enable the development of additional formulations. Two Prevotella copri metagenome-assembled genomes that are positively associated with ponderal growth are the principal contributors to MDCF-2-induced expression of metabolic pathways involved in utilizing the component glycans of MDCF-2—a microbiome-directed complementary food.