Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
282 result(s) for "Weber, Jochen"
Sort by:
New insights on Ötzi’s injuries from a clinical perspective
The Tyrolean Iceman (Ötzi), discovered in the Tyrolean Alps, in 1991 is a remarkably well-preserved natural mummy estimated to be around 5300 years old, dating back to the Copper Age. Numerous medical insights have been gained from the mummy, including the detection of Helicobacter pylori, Trichuris trichiura, gallstones, and calcifications in the blood vessels. The present study examined well-known ante-mortem traumas from a surgical perspective. These included an arrow injury to the shoulder, a stab wound to the right hand, traumatic brain injury (TBI), rib fractures, and frostbite on the toe. In the case of an arrow injury to the shoulder, external bleeding is a matter of debate. Physiological reconstruction has indicated that significant blood loss through the wound track to the outside of the body is unlikely, suggesting a potential survival time of several hours. The study raised doubts about the reported traumatic brain injury and frostbite of the fifth toe. The unusual hand position on the right side could be attributed to the fact that the stab wound, which was several days old, had been bandaged at the time of death. These clinical findings offer valuable new insights into Ötzi’s injuries.
neural bases of empathic accuracy
Theories of empathy suggest that an accurate understanding of another's emotions should depend on affective, motor, and/or higher cognitive brain regions, but until recently no experimental method has been available to directly test these possibilities. Here, we present a functional imaging paradigm that allowed us to address this issue. We found that empathically accurate, as compared with inaccurate, judgments depended on (i) structures within the human mirror neuron system thought to be involved in shared sensorimotor representations, and (ii) regions implicated in mental state attribution, the superior temporal sulcus and medial prefrontal cortex. These data demostrate that activity in these 2 sets of brain regions tracks with the accuracy of attributions made about another's internal emotional state. Taken together, these results provide both an experimental approach and theoretical insights for studying empathy and its dysfunction.
Meditation experience is associated with differences in default mode network activity and connectivity
Many philosophical and contemplative traditions teach that \"living in the moment\" increases happiness. However, the default mode of humans appears to be that of mind-wandering, which correlates with unhappiness, and with activation in a network of brain areas associated with self-referential processing. We investigated brain activity in experienced meditators and matched meditation-naive controls as they performed several different meditations (Concentration, Loving-Kindness, Choiceless Awareness). We found that the main nodes of the default-mode network (medial prefrontal and posterior cingulate cortices) were relatively deactivated in experienced meditators across all meditation types. Furthermore, functional connectivity analysis revealed stronger coupling in experienced meditators between the posterior cingulate, dorsal anterior cingulate, and dorsolateral prefrontal cortices (regions previously implicated in self-monitoring and cognitive control), both at baseline and during meditation. Our findings demonstrate differences in the default-mode network that are consistent with decreased mind-wandering. As such, these provide a unique understanding of possible neural mechanisms of meditation.
A patient-centric dataset of images and metadata for identifying melanomas using clinical context
Prior skin image datasets have not addressed patient-level information obtained from multiple skin lesions from the same patient. Though artificial intelligence classification algorithms have achieved expert-level performance in controlled studies examining single images, in practice dermatologists base their judgment holistically from multiple lesions on the same patient. The 2020 SIIM-ISIC Melanoma Classification challenge dataset described herein was constructed to address this discrepancy between prior challenges and clinical practice, providing for each image in the dataset an identifier allowing lesions from the same patient to be mapped to one another. This patient-level contextual information is frequently used by clinicians to diagnose melanoma and is especially useful in ruling out false positives in patients with many atypical nevi. The dataset represents 2,056 patients (20.8% with at least one melanoma, 79.2% with zero melanomas) from three continents with an average of 16 lesions per patient, consisting of 33,126 dermoscopic images and 584 (1.8%) histopathologically confirmed melanomas compared with benign melanoma mimickers. Measurement(s) melanoma • Skin Lesion Technology Type(s) Dermoscopy • digital curation Factor Type(s) approximate age • sex • anatomic site Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.13070345
Neural mechanisms tracking popularity in real-world social networks
Differences in popularity are a key aspect of status in virtually all human groups and shape social interactions within them. Little is known, however, about how we track and neurally represent others' popularity. We addressed this question in two real-world social networks using sociometric methods to quantify popularity. Each group member (perceiver) viewed faces of every other group member (target) while whole-brain functional MRI data were collected. Independent functional localizer tasks were used to identify brain systems supporting affective valuation (ventromedial prefrontal cortex, ventral striatum, amygdala) and social cognition (dorsomedial prefrontal cortex, precuneus, temporoparietal junction), respectively. During the face-viewing task, activity in both types of neural systems tracked targets' sociometric popularity, even when controlling for potential confounds. The target popularity-social cognition system relationship was mediated by valuation system activity, suggesting that observing popular individuals elicits value signals that facilitate understanding their mental states. The target popularity-valuation system relationship was strongest for popular perceivers, suggesting enhanced sensitivity to differences among other group members' popularity. Popular group members also demonstrated greater interpersonal sensitivity by more accurately predicting how their own personalities were perceived by other individuals in the social network. These data offer insights into the mechanisms by which status guides social behavior.
Prefrontal–striatal pathway underlies cognitive regulation of craving
The ability to control craving for substances that offer immediate rewards but whose long-term consumption may pose serious risks lies at the root of substance use disorders and is critical for mental and physical health. Despite its importance, the neural systems supporting this ability remain unclear. Here, we investigated this issue using functional imaging to examine neural activity in cigarette smokers, the most prevalent substance-dependent population in the United States, as they used cognitive strategies to regulate craving for cigarettes and food. We found that the cognitive down-regulation of craving was associated with (i) activity in regions previously associated with regulating emotion in particular and cognitive control in general, including dorsomedial, dorsolateral, and ventrolateral prefrontal cortices, and (ii) decreased activity in regions previously associated with craving, including the ventral striatum, subgenual cingulate, amygdala, and ventral tegmental area. Decreases in craving correlated with decreases in ventral striatum activity and increases in dorsolateral prefrontal cortex activity, with ventral striatal activity fully mediating the relationship between lateral prefrontal cortex and reported craving. These results provide insight into the mechanisms that enable cognitive strategies to effectively regulate craving, suggesting that it involves neural dynamics parallel to those involved in regulating other emotions. In so doing, this study provides a methodological tool and conceptual foundation for studying this ability across substance using populations and developing more effective treatments for substance use disorders.
The development of emotion regulation: an fMRI study of cognitive reappraisal in children, adolescents and young adults
The ability to use cognitive reappraisal to regulate emotions is an adaptive skill in adulthood, but little is known about its development. Because reappraisal is thought to be supported by linearly developing prefrontal regions, one prediction is that reappraisal ability develops linearly. However, recent investigations into socio-emotional development suggest that there are non-linear patterns that uniquely affect adolescents. We compared older children (10–13), adolescents (14–17) and young adults (18–22) on a task that distinguishes negative emotional reactivity from reappraisal ability. Behaviorally, we observed no age differences in self-reported emotional reactivity, but linear and quadratic relationships between reappraisal ability and age. Neurally, we observed linear age-related increases in activation in the left ventrolateral prefrontal cortex, previously identified in adult reappraisal. We observed a quadratic pattern of activation with age in regions associated with social cognitive processes like mental state attribution (medial prefrontal cortex, posterior cingulate cortex, anterior temporal cortex). In these regions, we observed relatively lower reactivity-related activation in adolescents, but higher reappraisal-related activation. This suggests that (i) engagement of the cognitive control components of reappraisal increases linearly with age and (ii) adolescents may not normally recruit regions associated with mental state attribution, but (iii) this can be reversed with reappraisal instructions.
Impact and centrality of attention dysregulation on cognition, anxiety, and low mood in adolescents
Functional impairments in cognition are frequently thought to be a feature of individuals with depression or anxiety. However, documented impairments are both broad and inconsistent, with little known about when they emerge, whether they are causes or effects of affective symptoms, or whether specific cognitive systems are implicated. Here, we show, in the adolescent ABCD cohort (N = 11,876), that attention dysregulation is a robust factor underlying wide-ranging cognitive task impairments seen in adolescents with moderate to severe anxiety or low mood. We stratified individuals high in DSM-oriented depression or anxiety symptomology, and low in attention deficit hyperactivity disorder (ADHD), as well as vice versa – demonstrating that those high in depression or anxiety dimensions but low in ADHD symptoms not only exhibited normal task performance across several commonly studied cognitive paradigms, but out-performed controls in several domains, as well as in those low in both dimensions. Similarly, we showed that there were no associations between psychopathological dimensions and performance on an extensive cognitive battery after controlling for attention dysregulation. Further, corroborating previous research, the co-occurrence of attention dysregulation was associated with a wide range of other adverse outcomes, psychopathological features, and executive functioning (EF) impairments. To assess how attention dysregulation relates to and generates diverse psychopathology, we performed confirmatory and exploratory network analysis with different analytic approaches using Gaussian Graphical Models and Directed Acyclic Graphs to examine interactions between ADHD, anxiety, low mood, oppositional defiant disorder (ODD), social relationships, and cognition. Confirmatory centrality analysis indicated that features of attention dysregulation were indeed central and robustly connected to a wide range of psychopathological traits across different categories, scales, and time points. Exploratory network analysis indicated potentially important bridging traits and socioenvironmental influences in the relationships between ADHD symptoms and mood/anxiety disorders. Trait perfectionism was uniquely associated with both better cognitive performance and broad psychopathological dimensions. This work suggests that attentional dysregulation may moderate the breadth of EF, fluid, and crystalized cognitive task outcomes seen in adolescents with anxiety and low mood, and may be central to disparate pathological features, and thus a target for attenuating wide-ranging negative developmental outcomes.
The neural bases of uninstructed negative emotion modulation
Although numerous neuroimaging studies have examined what happens when individuals are instructed to regulate their emotions, we rarely receive such instruction in everyday life. This study sought to examine what underlies uninstructed modulation of negative affect by examining neural responses when ‘responding naturally’ to negative stimuli—and for comparison—during instructed reappraisal of negative stimuli as well. Two analyses were conducted to identify how variability in negative affect related to neural responses when responding naturally. First, in a within-participant analysis, lower levels of self-reported negative affect on a given trial were associated with recruitment of dorsolateral and dorsomedial prefrontal cortex (PFC)—brain regions also active during instructed reappraisal—whereas higher levels of negative affect were associated with recruitment of the amygdala—a region that responded more strongly overall to negative than neutral stimuli. Second, in a between-participant analysis, lower levels of average self-reported negative affect were associated with recruitment of ventromedial PFC. These results suggest that uninstructed modulation of emotion involves a combination of two types of regulatory processes, with moment-to-moment modulation depending on prefrontal regions that support reappraisal and individual differences in modulation depending on ventromedial PFC, a region involved in fear extinction.
Emotions in \Black and White\ or Shades of Gray? How We Think About Emotion Shapes Our Perception and Neural Representation of Emotion
The demands of social life often require categorically judging whether someone's continuously varying facial movements express \"calm\" or \"fear,\" or whether one's fluctuating internal states mean one feels \"good\" or \"bad.\" In two studies, we asked whether this kind of categorical, \"black and white,\" thinking can shape the perception and neural representation of emotion. Using psychometric and neuroimaging methods, we found that (a) across participants, judging emotions using a categorical, \"black and white\" scale relative to judging emotions using a continuous, \"shades of gray,\" scale shifted subjective emotion perception thresholds; (b) these shifts corresponded with activity in brain regions previously associated with affective responding (i.e., the amygdala and ventral anterior insula); and (c) connectivity of these regions with the medial prefrontal cortex correlated with the magnitude of categorization-related shifts. These findings suggest that categorical thinking about emotions may actively shape the perception and neural representation of the emotions in question.