Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
35
result(s) for
"Wedding, Lisa M"
Sort by:
Localized outbreaks of coral disease on Arabian reefs are linked to extreme temperatures and environmental stressors
2020
The Arabian Peninsula borders the hottest reefs in the world, and corals living in these extreme environments can provide insight into the effects of warming on coral health and disease. Here, we examined coral reef health at 17 sites across three regions along the northeastern Arabian Peninsula (Persian Gulf, Strait of Hormuz and Oman Sea) representing a gradient of environmental conditions. The Persian Gulf has extreme seasonal fluctuations in temperature and chronic hypersalinity, whereas the other two regions experience more moderate conditions. Field surveys identified 13 coral diseases including tissue loss diseases of unknown etiology (white syndromes) in Porites, Platygyra, Dipsastraea, Cyphastrea, Acropora and Goniopora; growth anomalies in Porites, Platygyra and Dipsastraea; black band disease in Platygyra, Dipsastraea, Acropora, Echinopora and Pavona; bleached patches in Porites and Goniopora and a disease unique to this region, yellow-banded tissue loss in Porites. The most widespread diseases were Platygyra growth anomalies (52.9% of all surveys), Acropora white syndrome (47.1%) and Porites bleached patches (35.3%). We found a number of diseases not yet reported in this region and found differential disease susceptibility among coral taxa. Disease prevalence was higher on reefs within the Persian Gulf (avg. 2.05%) as compared to reefs within the Strait of Hormuz (0.46%) or Oman Sea (0.25%). A high number of localized disease outbreaks (8 of 17 sites) were found, especially within the Persian Gulf (5 of 8 sites). Across all regions, the majority of variation in disease prevalence (82.2%) was associated with the extreme temperature range experienced by these corals combined with measures of organic pollution and proximity to shore. Thermal stress is known to drive a number of coral diseases, and thus, this region provides a platform to study disease at the edge of corals’ thermal range.
Journal Article
Comparison of Cloud-Filling Algorithms for Marine Satellite Data
2020
Marine remote sensing provides comprehensive characterizations of the ocean surface across space and time. However, cloud cover is a significant challenge in marine satellite monitoring. Researchers have proposed various algorithms to fill data gaps “below the clouds”, but a comparison of algorithm performance across several geographic regions has not yet been conducted. We compared ten basic algorithms, including data-interpolating empirical orthogonal functions (DINEOF), geostatistical interpolation, and supervised learning methods, in two gap-filling tasks: the reconstruction of chlorophyll a in pixels covered by clouds, and the correction of regional mean chlorophyll a concentrations. For this purpose, we combined tens of cloud-free images with hundreds of cloud masks in four study areas, creating thousands of situations in which to test the algorithms. The best algorithm depended on the study area and task, and differences between the best algorithms were small. Ordinary Kriging, spatiotemporal Kriging, and DINEOF worked well across study areas and tasks. Random forests reconstructed individual pixels most accurately. We also found that high levels of cloud cover led to considerable errors in estimated regional mean chlorophyll a concentration. These errors could, however, be reduced by about 50% to 80% (depending on the study area) with prior cloud-filling.
Journal Article
Fish with Chips: Tracking Reef Fish Movements to Evaluate Size and Connectivity of Caribbean Marine Protected Areas
by
Nemeth, Richard S.
,
Monaco, Mark E.
,
Kendall, Matthew S.
in
Acoustic impedance
,
Animal Migration - physiology
,
Animals
2014
Coral reefs and associated fish populations have experienced rapid decline in the Caribbean region and marine protected areas (MPAs) have been widely implemented to address this decline. The performance of no-take MPAs (i.e., marine reserves) for protecting and rebuilding fish populations is influenced by the movement of animals within and across their boundaries. Very little is known about Caribbean reef fish movements creating a critical knowledge gap that can impede effective MPA design, performance and evaluation. Using miniature implanted acoustic transmitters and a fixed acoustic receiver array, we address three key questions: How far can reef fish move? Does connectivity exist between adjacent MPAs? Does existing MPA size match the spatial scale of reef fish movements? We show that many reef fishes are capable of traveling far greater distances and in shorter duration than was previously known. Across the Puerto Rican Shelf, more than half of our 163 tagged fish (18 species of 10 families) moved distances greater than 1 km with three fish moving more than 10 km in a single day and a quarter spending time outside of MPAs. We provide direct evidence of ecological connectivity across a network of MPAs, including estimated movements of more than 40 km connecting a nearshore MPA with a shelf-edge spawning aggregation. Most tagged fish showed high fidelity to MPAs, but also spent time outside MPAs, potentially contributing to spillover. Three-quarters of our fish were capable of traveling distances that would take them beyond the protection offered by at least 40-64% of the existing eastern Caribbean MPAs. We recommend that key species movement patterns be used to inform and evaluate MPA functionality and design, particularly size and shape. A re-scaling of our perception of Caribbean reef fish mobility and habitat use is imperative, with important implications for ecology and management effectiveness.
Journal Article
Advancing the integration of spatial data to map human and natural drivers on coral reefs
by
Stamoulis, Kostantinos A.
,
Kappel, Carrie V.
,
White, Crow
in
Aquaculture
,
Biology and Life Sciences
,
Computer and Information Sciences
2018
A major challenge for coral reef conservation and management is understanding how a wide range of interacting human and natural drivers cumulatively impact and shape these ecosystems. Despite the importance of understanding these interactions, a methodological framework to synthesize spatially explicit data of such drivers is lacking. To fill this gap, we established a transferable data synthesis methodology to integrate spatial data on environmental and anthropogenic drivers of coral reefs, and applied this methodology to a case study location-the Main Hawaiian Islands (MHI). Environmental drivers were derived from time series (2002-2013) of climatological ranges and anomalies of remotely sensed sea surface temperature, chlorophyll-a, irradiance, and wave power. Anthropogenic drivers were characterized using empirically derived and modeled datasets of spatial fisheries catch, sedimentation, nutrient input, new development, habitat modification, and invasive species. Within our case study system, resulting driver maps showed high spatial heterogeneity across the MHI, with anthropogenic drivers generally greatest and most widespread on O'ahu, where 70% of the state's population resides, while sedimentation and nutrients were dominant in less populated islands. Together, the spatial integration of environmental and anthropogenic driver data described here provides a first-ever synthetic approach to visualize how the drivers of coral reef state vary in space and demonstrates a methodological framework for implementation of this approach in other regions of the world. By quantifying and synthesizing spatial drivers of change on coral reefs, we provide an avenue for further research to understand how drivers determine reef diversity and resilience, which can ultimately inform policies to protect coral reefs.
Journal Article
Embedding the value of coastal ecosystem services into climate change adaptation planning
2022
Coastal habitats, such as salt marshes and dune systems, can protect communities from hazards by reducing coastline exposure. However, these critical habitats and their diverse ecosystem services are threatened by coastal development and the impacts from a changing climate. Ever increasing pressure on coastal habitats calls for coastal climate adaptation efforts that mitigate or adapt to these pressures in ways that maintain the integrity of coastal landscapes. An important challenge for decisionmakers is determining the best mitigation and adaptation strategies that not only protect human lives and property, but also safeguard the ability of coastal habitats to provide a broad suite of benefits. Here, we present a potential pathway for local-scale climate change adaptation planning through the identification and mapping of natural habitats that provide the greatest benefits to coastal communities. The methodology coupled a coastal vulnerability model with a climate adaptation policy assessment in an effort to identify priority locations for nature-based solutions that reduce vulnerability of critical assets using feasible land-use policy methods. Our results demonstrate the critical role of natural habitats in providing the ecosystem service of coastal protection in California. We found that specific dune habitats play a key role in reducing erosion and inundation of the coastline and that several wetland areas help to absorb energy from storms and provide a protective service for the coast of Marin county, California, USA. Climate change and adaptation planning are globally relevant issues in which the scalability and transferability of solutions must be considered. This work outlines an iterative approach for climate adaptation planning at a local-scale, with opportunity to consider the scalability of an iterative science-policy engagement approach to regional, national, and international levels.
Journal Article
Habitat Suitability Modeling to Inform Seascape Connectivity Conservation and Management
by
Stuart, Courtney E.
,
Green, Stephanie J.
,
Pittman, Simon J.
in
Algorithms
,
Biodiversity
,
Climate change
2021
Coastal habitats have experienced significant degradation and fragmentation in recent decades under the strain of interacting ecosystem stressors. To maintain biodiversity and ecosystem functioning, coastal managers and restoration practitioners face the urgent tasks of identifying priority areas for protection and developing innovative, scalable approaches to habitat restoration. Facilitating these efforts are models of seascape connectivity, which represent ecological linkages across heterogeneous marine environments by predicting species-specific dispersal between suitable habitat patches. However, defining the suitable habitat patches and migratory pathways required to construct ecologically realistic connectivity models remains challenging. Focusing on two reef-associated fish species of the Florida Keys, United States of America (USA), we compared two methods for constructing species- and life stage-specific spatial models of habitat suitability—penalized logistic regression and maximum entropy (MaxEnt). The goal of the model comparison was to identify the modeling algorithm that produced the most realistic and detailed products for use in subsequent connectivity assessments. Regardless of species, MaxEnt’s ability to distinguish between suitable and unsuitable locations exceeded that of the penalized regressions. Furthermore, MaxEnt’s habitat suitability predictions more closely aligned with the known ecology of the study species, revealing the environmental conditions and spatial patterns that best support each species across the seascape, with implications for predicting connectivity pathways and the distribution of key ecological processes. Our research demonstrates MaxEnt’s promise as a scalable, species-specific, and spatially explicit tool for informing models of seascape connectivity and guiding coastal conservation efforts.
Journal Article
Marine spatial planning and marine protected area planning are not the same and both are key for sustainability in a changing ocean
2025
Marine spatial planning (MSP) and marine protected area (MPA) planning are two distinct area-based management processes that are often conflated. While engaging in MPA planning is crucially important for biodiversity conservation and localized sustainable use, it cannot bring the benefits that larger scale MSP can deliver. Confusing the two can lead not only to missed opportunities to support ocean sustainability, but also to inefficiencies and even conflict. Here, we clearly define and distinguish each approach, then discuss opportunities to optimise synergies, especially under rapidly changing climate. MSP can support conservation efforts by taking the broader context into account, while integrating conservation and MPA planning into MSP allows for the maintenance of ocean health—always a core goal of marine management.
Journal Article
Key components of sustainable climate-smart ocean planning
by
Gissi, Elena
,
Reimer, Julie M.
,
Lombard, Amanda T.
in
Biodiversity
,
Climate action
,
Climate adaptation
2024
Planning of marine areas has spread widely over the past two decades to support sustainable ocean management and governance. However, to succeed in a changing ocean, marine spatial planning (MSP) must be ‘climate-smart’— integrating climate-related knowledge, being flexible to changing conditions, and supporting climate actions. While the need for climate-smart MSP has been globally recognized, at a practical level, marine managers and planners require further guidance on how to put it into action. Here, we suggest ten key components that, if well-integrated, would promote the development and implementation of sustainable, equitable, climate-smart MSP initiatives around the globe.
Journal Article
Building Coral Reef Resilience Through Spatial Herbivore Management
2019
Coral reef managers currently face the challenge of mitigating global stressors by enhancing local ecological resilience in the face of a changing climate. Effective herbivore management is one tool that managers can use in order to maintain resilience in the midst of severe and frequent bleaching events. One recommended approach is to establish networks of Herbivore Management Areas (HMAs), which prohibit the take of herbivorous reef fishes. However, there is a need to develop design principles to guide planning and implementation of these HMAs as a resilience-building tool. We refine available guidance from fully protected Marine Protected Area (MPA) networks and developed a set of 11 biophysical design principles specifically for HMAs. We then provide a case study of how to apply these principles using the main Hawaiian Islands. We address site-specific considerations in terms of protecting habitats, including ecologically critical areas, incorporating connectivity, and addressing climate and local threats. This synthesis integrates core marine spatial planning concepts with resilience-based management and provides actionable guidance on the design of HMAs. When combined with social considerations, these principles will support spatial planning in Hawai‘i and could guide the future design of HMA networks globally.
Journal Article
Remote sensing of three‐dimensional coral reef structure enhances predictive modeling of fish assemblages
by
Lepczyk, Christopher A.
,
Horning, Ned
,
Friedlander, Alan M.
in
Armed forces
,
Biogeography
,
Biomass
2019
LiDAR (light detection and ranging) allows for the quantification of three‐dimensional seascape structure, which is an important driver of coral reef communities. We hypothesized that three‐dimensional LiDAR‐derived covariables support more robust models of coral reef fish assemblages, compared to models using 2D environmental co variables. Predictive models of coral reef fish density, diversity, and biomass were developed using linear mixed effect models. We found that models containing combined 2D and 3D covariables outperformed models with only 3D covariables, followed by models containing only 2D covariables. Areas with greater three‐dimensional structure provide fish more refuge from predation and are crucial to identifying priority management locations that can potentially enhance reef resilience and recovery. Two‐dimensional seascape metrics alone do not adequately capture the elements of the seascape that drive reef fish assemblage characteristics, and the application of LiDAR data in this work serves to advance seascape ecology theory and practice in the third dimension. LiDAR (light detection and ranging) allows for the quantification of three‐dimensional seascape structure, which is an important driver of coral reef communities. We found that three‐dimensional LiDAR‐derived covariables support more robust models of coral reef fish assemblages, compared to simpler models (e.g., models using 2D environmental variables). Furthermore, areas with greater three‐dimensional structure provide fish more refuge from predation and are crucial to identify biodiversity hotspots, areas of greater potential fish biomass and locations to prioritize for spatial management.
Journal Article