Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
67 result(s) for "Wei, Shue"
Sort by:
Effects of water flow conditions on soil properties and microbial communities in the lower Heihe river Basin, Northwest China
Background Effective hydrological management in arid ecosystems requires a comprehensive understanding of how water flow conditions influence biota and ecosystem processes. However, the responses of soil microbial communities remain poorly understood. This study aims to evaluate whether, and to what extent, a 20-year difference in flow regimes affects soil microbial diversity, composition, and function. The composition of the soil microbial community and the factors shaping it were investigated in two arid riparian zones (East River and West River) of the lower Heihe River Basin using 16 S rRNA amplicon high-throughput sequencing. Results The dominant phyla of the bacterial, fungal, and archaeal communities were Proteobacteria, Ascomycota, and Euryarchaeota, respectively. Co-occurrence network analysis revealed greater network connectivity and stability in the West River, suggesting enhanced mutualistic interactions and physiological acclimation strategies in response to low-flow conditions. Microbial-soil correlations varied with flow condition: bacterial and fungal communities under high-flow conditions were associated with bulk density and available nitrogen, whereas low-flow communities were more influenced by available potassium. High-flow conditions also strengthened the correlation between microbial communities and nitrogen-related functions. Functional prediction showed that chemoheterotrophy was the dominant bacterial function, and bacterial and archaeal communities were partially involved in the nitrogen cycle. Conclusions Changes in flow regimes slightly modulated microbial community composition and diversity. However, microbial functions appeared to respond more strongly to hydrological factors than microbial diversity. Thus, alterations in microbial structure and function were jointly influenced by hydrological conditions and the availability of nutrients in arid riparian zones.
Circular RNA circCSPP1 knockdown attenuates doxorubicin resistance and suppresses tumor progression of colorectal cancer via miR-944/FZD7 axis
Background Circular RNAs (circRNAs) have been reported to play vital roles in colorectal cancer (CRC). However, only a few circRNAs have been experimentally validated and functionally described. In this research, we aimed to reveal the functional mechanism of circCSPP1 in CRC. Methods 36 DOX sensitive and 36 resistant CRC cases participated in this study. The expression of circCSPP1, miR-944 and FZD7 were detected by quantitative real time polymerase chain reaction (qRT-PCR) and the protein levels of FZD7, MRP1, P-gp and LRP were detected by western blot. Cell proliferation, migration, invasion, and apoptosis were assessed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay, transwell assay, or flow cytometry analysis, respectively. The interaction between miR-944 and circCSPP1 or frizzled-7 (FZD7) was predicted by Starbase 3.0 and verified by the dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull down assay. Xenograft tumor assay was performed to examine the effect of circCSPP1 on tumor growth in vivo. Results The expression of circCSPP1 and FZD7 was upregulated while miR-944 expression was downregulated in doxorubicin (DOX)-resistant CRC tissues and cells. CircCSPP1 knockdown significantly downregulated enhanced doxorubicin sensitivity, suppressed proliferation, migration, invasion, and induced apoptosis in DOX-resistant CRC cells. Interestingly, we found that circCSPP1 directly downregulated miR-944 expression and miR-944 decreased FZD7 level through targeting to 3′ untranslated region (UTR) of FZD7. Furthermore, circCSPP1 mediated DOX-resistant CRC cell progression and doxorubicin sensitivity by regulating miR-944/FZD7 axis. Besides, circCSPP1 downregulation dramatically repressed CRC tumor growth in vivo . Conclusion Our data indicated that circCSPP1 knockdown inhibited DOX-resistant CRC cell growth and enhanced doxorubicin sensitivity by miR-944/FZD7 axis, providing a potential target for CRC therapy.
Long noncoding RNA TUG1 regulates the progression of colorectal cancer through miR-542-3p/TRIB2 axis and Wnt/β-catenin pathway
Background Colorectal cancer (CRC) is one of the third normal malignancy worldwide. Taurine-upregulated gene 1 (TUG1), a member of long noncoding RNAs (lncRNAs), has been reported to be involved in various cancers. However, the mechanism underlying TUG1 in the progression of CRC remains unclear. Methods The expression of TUG1, microRNA-542-3p (miR-542-3p), and tribbles homolog 2 (TRIB2) in CRC tissues and cells (LoVo and HCT116) were detected by quantitative real-time PCR (qRT-PCR). Methyl thiazolyl tetrazolium (MTT), transwell and flow cytometry assays were employed to evaluate the effects of TUG1 in CRC cells. The interaction between miR-542-3p and TUG1 or TRIB2 were verified by dual-luciferase reporter assay. A xenograft tumor model in nude mice was established to investigate the biological role of TUG1 in CRC in vivo . Results TUG1 was increased in CRC tissues and cells (LoVo and HCT116) in contrast with adjacent normal tissues and normal intestinal mucous cells (CCC-HIE-2). Downregulation of TUG1 or TRIB2 suppressed the proliferation, migration, invasion, and induced apoptosis in CRC cells. And knockdown of TUG1 repressed tumor growth in vivo . Besides, overexpression of TRIB2 reversed the effects of TUG1 depletion on the progression of CRC. Meanwhile, TUG1 interacted with miR-542-3p and TRIB2 was a target of miR-542-3p. Furthermore, miR-542-3p knockdown or TRIB2 overexpression partly reversed the suppression effect of TUG1 depletion on the Wnt/β-catenin pathway. Conclusions TUG1 served as a tumor promoter, impeded the progression of CRC by miR-542-3p/TRIB2 axis to inactivate of Wnt/β-catenin pathway, which providing a novel target for CRC treatment.
Evaluation of satellite-based and reanalysis soil moisture products using ground-observations in the Qilian Mountains
Critical to the reliable application of gridded soil moisture (SM) products is a thorough assessment of their quality, particularly in water conservation and supply areas such as Qilian Mountains (QLM). The study systematically evaluated the accuracy of surface soil moisture (SSM) and root-zone soil moisture (RZSM) using 14 ground-based sites in the QLM from 2019 to 2021. The study evaluated seven SSM products, comprising four satellite-based datasets (AMSR2-LPRM, SMOS-IC, SMAP-L3, and ESA CCI) and three reanalysis datasets (SMAP-L4, GLDAS-Noah, and ERA5-Land). Furthermore, the performance of three RZSM products derived from these reanalysis datasets was also examined. For SSM products, reanalysis products generally exhibit higher R (0.56) and lower ubRMSE (0.04 m3/m3) compared to satellite-based products (0.44, 0.05 m3/m3). The SMAP-L3 showed the best performance (R = 0.71), followed by the ERA5-Land and SMAP-L4. For RZSM products, compared to GLDAS and ERA5-Land, SMAP-L4 demonstrated better performance (R = 0.59) and shown greater potential for application in QLM. The average R (0.65) of SSM was highest for grassland sites, attributed to fewer land cover heterogeneity. For forest sites, the SSM performance was generally lowest (average R = −0.11). In Arou site, the superior spatial representativeness of Cosmic ray neutron sensor (CRNS) measurements enhanced the evaluation performance (higher R, lower ubRMSE) of nearly all products. Notably, the comparative evaluation with in-situ data underscored the robustness of CRNS as a reference for SM evaluation and proved its mesoscale applicability. The research aimed to provide a reference for the application of gridded SM products in water resources monitoring and ecosystem services in QLM.
Long noncoding RNA TUG1 regulates the progression of colorectal cancer through miR-542-3p/TRIB2 axis and Wnt/beta-catenin pathway
Colorectal cancer (CRC) is one of the third normal malignancy worldwide. Taurine-upregulated gene 1 (TUG1), a member of long noncoding RNAs (lncRNAs), has been reported to be involved in various cancers. However, the mechanism underlying TUG1 in the progression of CRC remains unclear. The expression of TUG1, microRNA-542-3p (miR-542-3p), and tribbles homolog 2 (TRIB2) in CRC tissues and cells (LoVo and HCT116) were detected by quantitative real-time PCR (qRT-PCR). Methyl thiazolyl tetrazolium (MTT), transwell and flow cytometry assays were employed to evaluate the effects of TUG1 in CRC cells. The interaction between miR-542-3p and TUG1 or TRIB2 were verified by dual-luciferase reporter assay. A xenograft tumor model in nude mice was established to investigate the biological role of TUG1 in CRC in vivo. TUG1 was increased in CRC tissues and cells (LoVo and HCT116) in contrast with adjacent normal tissues and normal intestinal mucous cells (CCC-HIE-2). Downregulation of TUG1 or TRIB2 suppressed the proliferation, migration, invasion, and induced apoptosis in CRC cells. And knockdown of TUG1 repressed tumor growth in vivo. Besides, overexpression of TRIB2 reversed the effects of TUG1 depletion on the progression of CRC. Meanwhile, TUG1 interacted with miR-542-3p and TRIB2 was a target of miR-542-3p. Furthermore, miR-542-3p knockdown or TRIB2 overexpression partly reversed the suppression effect of TUG1 depletion on the Wnt/[beta]-catenin pathway. TUG1 served as a tumor promoter, impeded the progression of CRC by miR-542-3p/TRIB2 axis to inactivate of Wnt/[beta]-catenin pathway, which providing a novel target for CRC treatment.
Mutation of Arabidopsis Plastid Phosphoglucose Isomerase Affects Leaf Starch Synthesis and Floral Initiation
We isolated pg1-1, an Arabidopsis mutant with a decreased plastid phospho-glucose (Glc) isomerase activity. While pgi1-1 mutant has a deficiency in leaf starch synthesis, it accumulates starch in root cap cells. It has been shown that a plastid transporter for hexose phosphate transports cytosolic Glc-6-P into plastids and expresses restricted mainly to the heterotrophic tissues. The decreased starch content in leaves of the pgi1-1 mutant indicates that cytosolic Glc-6-P cannot be efficiently transported into chloroplasts to complement the mutant's deficiency in chloroplastic phospho-Glc isomerase activity for starch synthesis. We cloned the Arabidopsis PGI1 gene and showed that it encodes the plastid phospho-Glc isomerase. The pgi1-1 allele was found to have a single nucleotide substitution, causing a Ser to Phe transition. While the flowering times of the Arabidopsis starch-deficient mutants pgi1, pgm1, and adg1 were similar to that of the wild type under long-day conditions, it was significantly delayed under short-Day conditions. The pleiotropic phenotype of late flowering conferred by these starch metabolic mutations suggests that carbohydrate metabolism plays an important role in floral initiation.
Phytosterol content and the campesterol sitosterol ratio influence cotton fiber development: role of phytosterols in cell elongation
Phytosterols play an important role in plant growth and development, including cell division, cell elongation, embryogenesis, cellulose biosynthesis, and cell wall formation. Cotton fiber, which undergoes synchronous cell elongation and a large amount of cellulose synthesis, is an ideal model for the study of plant cell elongation and cell wall biogenesis. The role of phytosterols in fiber growth was investigated by treating the fibers with tfidemorph, a sterol biosynthetic inhibitor. The inhibition of phy- tosterol biosynthesis resulted in an apparent suppression of fiber elongation in vitro or in planta. The determination of phy- tosterol quantity indicated that sitosterol and campesterol were the major phytosterols in cotton fibers; moreover, higher con- centrations of these phytosterols were observed during the period of rapid elongation of fibers. Furthermore, the decrease and increase in campesterol:sitosterol ratio was associated with the increase and decease in speed of elongation, respectively, dur- ing the elongation stage. The increase in the ratio was associated with the transition from cell elongation to secondary cell wall synthesis. In addition, a number of phytosterol biosynthetic genes were down-regulated in the short fibers of ligon lintless-1 mutant, compared to its near-isogenic wild-type TM-1. These results demonstrated that phytosterols play a crucial role in cot- ton fiber development, and particularly in fiber elongation.
Efficacy and Safety Evaluation of a Chlorine Dioxide Solution
In this study, a chlorine dioxide solution (UC-1) composed of chlorine dioxide was produced using an electrolytic method and subsequently purified using a membrane. UC-1 was determined to contain 2000 ppm of gaseous chlorine dioxide in water. The efficacy and safety of UC-1 were evaluated. The antimicrobial activity was more than 98.2% reduction when UC-1 concentrations were 5 and 20 ppm for bacteria and fungi, respectively. The half maximal inhibitory concentrations (IC50) of H1N1, influenza virus B/TW/71718/04, and EV71 were 84.65 ± 0.64, 95.91 ± 11.61, and 46.39 ± 1.97 ppm, respectively. A 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test revealed that the cell viability of mouse lung fibroblast L929 cells was 93.7% at a 200 ppm UC-1 concentration that is over that anticipated in routine use. Moreover, 50 ppm UC-1 showed no significant symptoms in a rabbit ocular irritation test. In an inhalation toxicity test, treatment with 20 ppm UC-1 for 24 h showed no abnormality and no mortality in clinical symptoms and normal functioning of the lung and other organs. A ClO2 concentration of up to 40 ppm in drinking water did not show any toxicity in a subchronic oral toxicity test. Herein, UC-1 showed favorable disinfection activity and a higher safety profile tendency than in previous reports.
Therapeutic Benefits of Induced Pluripotent Stem Cells in Monocrotaline-Induced Pulmonary Arterial Hypertension
Pulmonary arterial hypertension (PAH) is characterized by progressive increases in vascular resistance and the remodeling of pulmonary arteries. The accumulation of inflammatory cells in the lung and elevated levels of inflammatory cytokines in the bloodstream suggest that inflammation may play a role in PAH. In this study, the benefits of induced pluripotent stem cells (iPSCs) and iPSC-conditioned medium (iPSC CM) were explored in monocrotaline (MCT)-induced PAH rats. We demonstrated that both iPSCs and iPSC CM significantly reduced the right ventricular systolic pressure and ameliorated the hypertrophy of the right ventricle in MCT-induced PAH rats in models of both disease prevention and disease reversal. In the prevention of MCT-induced PAH, iPSC-based therapy led to the decreased accumulation of inflammatory cells and down-regulated the expression of the IL-1β, IL-6, IL-12α, IL-12β, IL-23 and IFNγ genes in lung specimens, which implied that iPSC-based therapy may be involved in the regulation of inflammation. NF-κB signaling is essential to the inflammatory cascade, which is activated via the phosphorylation of the NF-κB molecule. Using the chemical inhibitor specifically blocked the phosphorylation of NF-κB, and in vitro assays of cultured human M1 macrophages implied that the anti-inflammation effect of iPSC-based therapy may contribute to the disturbance of NF-κB activation. Here, we showed that iPSC-based therapy could restore the hemodynamic function of right ventricle with benefits for preventing the ongoing inflammation in the lungs of MCT-induced PAH rats by regulating NF-κB phosphorylation.
Disinfection of Dental Chair Water Using Aqueous Chlorine Dioxide
Chlorine dioxide is a safe, environmentally friendly disinfecting agent. In this study, aqueous chlorine dioxide (ACD) was used to improve the water quality of dental chairs. However, chlorine dioxide is readily released from ACD solutions under open atmosphere conditions. Described herein is a water purification and disinfection system using ACD. The system was designed, fabricated, and integrated into an existing dental chair water system. This system is referred to as an ACD dental chair. Because ClO2 readily degasses from ACD, there needs to be a way to maintain and measure the ACD solution in real time. In our studies, we found that pH and oxidation-reduction potential (ORP) change as a function of chlorine dioxide concentration and are easily controlled and measured. The dosing of the ACD was designed to begin at 800 mV and stop dosing at 810 mV in the ACD dental chair. Through use of this continuous monitoring and automatic dosing system, the water ORP was controlled between 800 and 860 mV. This range is the effective concentration of chlorine dioxide that is without chlorine-like odor and microorganism growth. The ACD dental chair controlled the total bacterial count to <5 CFU/mL and the chlorite concentration was less than 0.0004 mg/L, meeting legal standards of Taiwan, the USA, and China. In addition to the application of ACD in dental chairs, it may also be used in closed water systems for food, cosmetics, beverages, and other industries.