Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
136 result(s) for "Wei, Yingyi"
Sort by:
Flavonoids from Polygonum hydropiper L. regulate PCV2-induced oxidative stress of RAW264.7 cells via Pi3k/AKT and Nrf2/HO-1 signaling pathways
Flavonoid n-butanol (FNB) possess diverse pharmacological properties. This study aimed to explore the mechanism of FNB in regulating oxidative response in PCV2-infected RAW264.7 cells. PCV2-infected macrophages were treated with FNB, and oxidative stress markers, antioxidant enzyme activities, as well as related gene and protein expression were assessed to evaluate FNB’s regulatory effects. Specifically, the level of Nitric Oxide (NO), Total antioxidant capacity (T-AOC), anti-hydroxyl radical capacity, anti-superoxide anion capacity, L-Glutathione (GSH) level, Super Oxide Dismutase (SOD) and Catalase (CAT) were detected. The expression of key oxidative stress–related and signaling pathway genes and proteins was determined by qPCR and western blotting, respectively. The results indicated that FNB reduced intracellular ROS, increased SOD and CAT activities, improved antioxidant capacity, upregulated the mRNA expression levels of HO-1 , NQO1 , Nrf2 , Pi3kca , SOD , and HDAC1 , downregulated AKT , Keap1, and HAT1 , enhanced HDAC1 activity, and inhibited HAT activity. In conclusion, FNB protects against PCV2-induced oxidative damage by activating the PI3K/AKT pathway and inhibiting Keap1, which collectively enhance the Nrf2/HO-1 antioxidant response.
The Immunoprotective Effect of ROP27 Protein of Eimeria tenella
Eimeria tenella rhoptry protein has the properties of a protective antigen. EtROP27 is a pathogenic gene that is detected via a transcriptome, but its expression pattern, immunogenicity, and potency are unknown. Therefore, a gene segment of EtROP27 was amplified and transplanted into the pET28a prokaryotic vector for the expression of the recombinant protein, and it subsequently purified for the generation of a polyclonal antibody. Then, RT-PCR and Western blotting were performed to understand the expression pattern of EtROP27. Subsequently, animal experiments were conducted to evaluate the immunoprotective effect of the recombinant protein with different immunizing doses (50, 100, and 150 μg). The results showed that the expression of EtROP27 gradually increased with the prolongation of infection time, reaching the highest level at 96 h and then decreasing. Additionally, EtROP27 is a natural antigen of coccidia that can stimulate the body to produce high levels of IgY. As with recombinant protein vaccines, the results of immune protection evaluation tests showed that the average weight gain rates of the immune challenge groups were significantly higher than that of the challenged control group, and their average lesion scores were significantly lower than that of the challenged control group. Furthermore, the oocyst excretion decreased by 81.25%, 86.21%, and 80.01%, and the anticoccidial index was 159.45, 171.47, and 166.75, respectively, for these groups. EtROP27 is a promising antigen gene candidate for the development of a coccidiosis vaccine.
Phylogenetic and Evolutionary Analysis of Porcine Epidemic Diarrhea Virus in Guangxi Province, China, during 2020 and 2024
The variant porcine epidemic diarrhea virus (PEDV) has caused considerable economic losses to the global pig industry since 2010. In this study, a total of 5859 diarrhea samples were collected from different pig farms in China’s Guangxi province during January 2020 and March 2024 and tested for PEDV using RT-qPCR. The positivity rate of PEDV was 11.90% (697/5859). Ninety-two PEDV-positive samples were selected based on sampling time, and the sampling region for amplification, sequencing, and analysis of the S1, M, and N genes. Phylogenetic analysis of the S1 gene revealed that all strains from Guangxi province were distributed in three subgroups, i.e., 81.5% (75/92) in the G2a subgroup, 4.3% (4/92) in the G2b subgroup, and 14.1% (13/92) in the G2c subgroup. The sequence analysis revealed that the S1 gene sequences from Guangxi province had higher homology with the variant strains than with the classical strains, showing as high as 99.2% with the variant strain AJ1102 and only 94.3% with the classical strain CV777. Recombination analysis revealed that the GX-BS08-2023 strain (G2c) from Guangxi province originated from inter-lineage recombination between the GX-BS09-2023 (G2a) and CH-JN547228-2011 (G1a) strains. In addition, the S1 gene of the G2a and G2b subgroup strains shared many mutations and insertions. There were common mutations of N143D and P235L in the G2a subgroup. Evolutionary analysis revealed that all Guangxi strains belonged to the G2 genotype. These strains have spread rapidly since the PEDV variant strains that emerged in 2010, weakened until 2021, and then remained stable. In conclusion, the results revealed the latest genetic evolution of circulating PEDV strains in Guangxi province in recent years, providing important information for preventing and controlling PEDV infection. Currently, the G2a subgroup strains are the predominant strains circulating in pig herds in Guangxi province, southern China.
Pathogenic Characteristics of a Porcine Astrovirus Strain Isolated in China
Astroviral infection is considered to be one of the causes of mammalian diarrheal diseases. It has been shown that astrovirus infections cause varying degrees of diarrhea in turkeys and mice. However, the pathogenesis of porcine astrovirus is unknown. In this study, the virulence of a cytopathic porcine astrovirus (PAstV) strain (PAstV1-GX1) isolated from the PK-15 cell line was tested using seven-day-old nursing piglets. The results showed that PAstV1-GX1 infection could cause mild diarrhea, growth retardation, and damage of the villi of the small intestinal mucosa. However, all the above symptoms could be restored within 7 to 10days post inoculation (dpi). To evaluate the innate immunity response of PAstV in vivo, the alteration of inflammatory cytokine expression in piglets infected with PAstV1-GX1 was determined using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The mRNA expression levels of the IFNβ and ISG54 were found to be significantly elevated in virus-infected piglets. In contrast, expression of IFNλ was downregulated in piglets infected with PAstV1-GX1. In addition, the mRNA expression of the tight junction protein 1 and 2 and zonula occludin 1, which are associated with the intestinal barrier permeability, were affected after PAstV1 infection. The present study adds to our understanding of the pathogenic mechanism of PAstV and has established an animal model for further study of pig astrovirus infection.
A Quadruplex RT-qPCR for the Detection of Porcine Sapelovirus, Porcine Kobuvirus, Porcine Teschovirus, and Porcine Enterovirus G
Porcine sapelovirus (PSV), porcine kobuvirus (PKV), porcine teschovirus (PTV), and porcine enterovirus G (EV-G) are all important viruses in the swine industry. These viruses play important roles in the establishment of similar clinical signs of diseases in pigs, including diarrhea, encephalitis, and reproductive and respiratory disorders. The early accurate detection of these viruses is crucial for dealing with these diseases. In order for the differential detection of these four viruses, specific primers and TaqMan probes were designed for the conserved regions in the 5′ untranslated region (UTR) of these four viruses, and one-step quadruplex reverse-transcription real-time quantitative PCR (RT-qPCR) for the detection of PSV, PKV, PTV, and EV-G was developed. The results showed that this assay had the advantages of high sensitivity, strong specificity, excellent repeatability, and simple operation. Probit regression analysis showed that the assay obtained low limits of detection (LODs) for PSV, PKV, PTV, and EV-G, with 146.02, 143.83, 141.92, and 139.79 copies/reaction, respectively. The assay showed a strong specificity of detecting only PSV, PKV, PTV, and EV-G, and had no cross-reactivity with other control viruses. The assay exhibited excellent repeatability of the intra-assay coefficient of variation (CV) of 0.28–1.58% and the inter-assay CV of 0.20–1.40%. Finally, the developed quadruplex RT-qPCR was used to detect 1823 fecal samples collected in Guangxi Province, China between January 2024 and December 2024. The results indicated that the positivity rates of PSV, PKV, PTV, and EV-G were 15.25% (278/1823), 21.72% (396/1823), 18.82% (343/1823), and 27.10% (494/1823), respectively, and there existed phenomena of mixed infections. Compared with the reference RT-qPCR/RT-PCR established for these four viruses, the coincidence rates for the detection results of PSV, PKV, PTV, and EV-G reached 99.51%, 99.40%, 99.51%, and 99.01%, respectively. In conclusions, the developed quadruplex RT-qPCR could simultaneously detect PSV, PKV, PTV, and EV-G, and provided an efficient and convenient detection method to monitor the epidemic status and variation of these viruses.
A Novel Polysaccharide from Sargassum weizhouense: Extraction Optimization, Structural Characterization, Antiviral and Antioxidant Effects
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important pathogens in the global swine industry over the past three decades. There is no licensed antiviral medication that can effectively control this infection. In the present study, the structure of SP-1 isolated and purified from Sargassum weizhouense was analyzed, and its antioxidant capacity and antiviral effect in MARC-145 cells against PRRSV were investigated. The results showed that SP-1 is a novel polysaccharide which mainly is composed of →4)-β-D-ManpA-(1→, →4)-α-L-GulpA-(1→ and a small amount of →4)-β-D-GalpA-(1→. PRRSV adsorption, replication, and release were all suppressed by SP-1. SP-1 therapy down-regulated mRNA expression of the CD163 receptor while increasing the antioxidant gene expression of Nrf2, TXNIP, and HO-1; increasing the protein expression of NQO1 and HO-1; and drastically reducing the protein expression of p-p65. The findings indicated that SP-1 reduces PRRSV adsorption, replication, and release through blocking the expression of the crucial CD163 receptor during infection. Meanwhile, SP-1 exerts antioxidant effects in PRRSV-infected cells through the activation of the Nrf2-HO1 signaling pathway.
PRV Induces Neurological Inflammatory Injury by Activating Necroptosis of Brain Tissue
Pseudorabies virus (PRV) can infect a wide range of animal species, including swine and rodents. Infection in pigs is associated with significant economic losses in the global pork industry and is characterized by acute, often fatal disease, as well as central nervous system (CNS) invasion, which leads to neurological manifestations. Although PRV replication has been extensively characterized in certain murine neuronal cell lines such as Neuro-2a, the mechanisms underlying PRV-induced neuroinflammatory injury and necroptosis remain largely unclear. In this study, Kunming mice and mouse astrocytes (C8-D1A) were infected with PRV-GXLB-2013 at different doses to evaluate neurological injury and inflammatory responses. Given that the NF-κB/MLKL signaling pathway was found to be activated during PRV infection, a selective MLKL inhibitor, necrosulfonamide (NSA), was applied to investigate the role of necroptosis in PRV-induced neuroinflammatory damage. Mice infected with higher viral doses showed increased mortality, severe neurological symptoms, elevated brain inflammation, and pathological changes. In C8-D1A cells, PRV infection significantly upregulated inflammatory cytokines and key components of the NF-κB/MLKL pathway. Importantly, NSA treatment markedly reduced these inflammatory responses, mitochondrial damage, and cellular necrosis. Collectively, these findings suggest that PRV infection triggers neuroinflammatory injury through the activation of necroptosis and the NF-κB/MLKL signaling pathway. This study provides novel mechanistic insights into PRV-induced neurological damage and highlights potential therapeutic targets for intervention.
Antimicrobial Resistance and Genomic Characterization of an Escherichia coli Strain Harboring p0111 and an IncX1-Type Plasmid, Isolated from the Brain of an Ostrich
An outbreak characterized by clinical signs of diarrhea and paralysis, occasionally progressing to fatal outcomes, occurred at an ostrich breeding facility. Conventional antibiotic treatments proved ineffective. To investigate the etiology of the disease, brain and liver specimens were collected for diagnostic analysis. An Escherichia coli (E. coli) isolate, designated strain HZDC01, was obtained from cerebral tissues, and whole-genome sequencing was performed for genomic characterization. Genomic analysis revealed that the chromosomal DNA harbors numerous resistance genes, conferring multidrug resistance through complex mechanisms. Furthermore, a p0111-type plasmid carrying the blaCTX-M-55 gene and an IncX1-type plasmid harboring rmtB, sul1, APH(6)-Id, tet(A), AAC(3)-IIc, aadA2, blaTEM-1B, and floR genes were identified. These plasmids carry numerous mobile genetic elements that can disseminate via horizontal gene transfer, thereby amplifying the risk of resistance-gene spread within bacterial populations. Additionally, the ibeB and ibeC genes, which encode proteins involved in the invasion of brain microvascular endothelial cells, were identified. These genes may facilitate E. coli penetration of the blood–brain barrier, potentially leading to meningitis and posing a life-threatening risk to the host. This is the first report of the isolation and characterization of extended-spectrum beta-lactamase E. coli from the brain of an ostrich with paralysis. The findings provide valuable genomic insights into the antimicrobial resistance profiles and pathogenic mechanisms of ostrich-derived E. coli isolates.
Effects of Quercitrin on PRV-Induced Secretion of Reactive Oxygen Species and Prediction of lncRNA Regulatory Targets in 3D4/2 Cells
Quercitrin is a kind of flavonoid that is found in many plants; it has good antioxidant activity, and can regulate oxidative stress induced by Pseudorabies virus (PRV)-infected cells. In this study, the secretion of reactive oxygen species (ROS) induced by PRV infection was detected by flow cytometry, and RNA expression profiles of the 3D4/2 cells were produced and analyzed by sequenced GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes); the sequencing results were verified by RT-qCR. The results showed that the secretion of ROS induced by PRV infection in 3D4/2 cells could be significantly decreased by quercitrin. The differentially expressed 1055 mRNA, 867 lncRNA, 99 miRNA, and 69 circRNA were detected between the control group and the PRV infection group. The differentially expressed 1202 mRNA, 785 lncRNA, 115 miRNA, and 79 circRNA were found between the PRV+ quercitrin group and the control group. The differentially expressed 357 mRNA, 69 lncRNA, 111 miRNA, and 81 circRNA were obtained between the PRV+ quercitrin group and the PRV group. The significantly differentially expressed mRNAs were mainly involved in cell metabolism, regulatory protein phosphorylation, protein phosphorylation, antioxidation, regulatory phosphorylation, and so on. Among them, the mRNAs related to antioxidant response and oxidative stress were thioredoxin-interacting protein (TXNIP) and nitric oxide synthase 2 (NOS2). According to the network diagram of lncRNA–miRNA–mRNA, two targeted miRNA (ssc-miR-450c-3p and novel-m0400-3p) relationships with TXNIP and NOS2 were screened. This study provides a scientific foundation for further research for the function of quercitrin in anti-virus-induced oxidative stress.
Polygonum hydropiper Compound Extract Inhibits Clostridium perfringens-Induced Intestinal Inflammatory Response and Injury in Broiler Chickens by Modulating NLRP3 Inflammasome Signaling
Necrotic enteritis (NE) is a critical disease affecting broiler health, with Clostridium perfringens as its primary pathogen. Polygonum hydropiper compound extract (PHCE), formulated based on traditional Chinese veterinary principles, contains primarily flavonoids with antibacterial, anti-inflammatory, and antioxidant properties. However, PHCE’s efficacy against Clostridium perfringens-induced NE and its underlying mechanism remain unclear. This study employed network pharmacology and molecular docking to predict PHCE’s potential mechanisms in treating NE, followed by determining its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Clostridium perfringens (C. perf). Subsequently, the effects of various PHCE doses on intestinal damage, antioxidant capacity, and inflammatory factors in C. perf-infected broilers were assessed. Network pharmacology and molecular docking suggested that PHCE’s therapeutic mechanism for NE involves the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome signaling pathway, with flavonoids such as quercetin, kaempferol, and isorhamnetin as key active components. PHCE exhibited an MIC of 3.13 mg/mL and an MBC of 12.5 mg/mL against C. perf. High PHCE doses effectively reduced intestinal damage scores in both the jejunum and ileum, accompanied by attenuated intestinal pathological changes. Additionally, the high dose significantly increased superoxide dismutase (SOD) levels while decreasing malondialdehyde (MDA), hydrogen peroxide (H2O2), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) in the jejunum and ileum (p < 0.01 or p < 0.05). PHCE also modulated the expression of caspase-1, IL-1β, gasdermin D (GSDMD), and NLRP3 mRNA, key components of the NLRP3 inflammasome signaling pathway, in both intestinal segments. These findings collectively indicate that PHCE protects against C. perf-induced oxidative stress and inflammatory damage in NE. By enhancing antioxidant capacity, PHCE likely reduces oxidative stress and inflammatory responses, subsequently modulating NLRP3 inflammasome signaling pathway key factor expression. Overall, this research provides valuable insights into the protective mechanism of the herbal compound PHCE and its potential benefits for avian health.