Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
39
result(s) for
"Weinzaepfel, Philippe"
Sort by:
Mimetics: Towards Understanding Human Actions Out of Context
2021
Recent methods for video action recognition have reached outstanding performances on existing benchmarks. However, they tend to leverage context such as scenes or objects instead of focusing on understanding the human action itself. For instance, a tennis field leads to the prediction playing tennis irrespectively of the actions performed in the video. In contrast, humans have a more complete understanding of actions and can recognize them without context. The best example of out-of-context actions are mimes, that people can typically recognize despite missing relevant objects and scenes. In this paper, we propose to benchmark action recognition methods in such absence of context and introduce a novel dataset, Mimetics, consisting of mimed actions for a subset of 50 classes from the Kinetics benchmark. Our experiments show that (a) state-of-the-art 3D convolutional neural networks obtain disappointing results on such videos, highlighting the lack of true understanding of the human actions and (b) models leveraging body language via human pose are less prone to context biases. In particular, we show that applying a shallow neural network with a single temporal convolution over body pose features transferred to the action recognition problem performs surprisingly well compared to 3D action recognition methods.
Journal Article
DeepMatching: Hierarchical Deformable Dense Matching
by
Harchaoui, Zaid
,
Weinzaepfel, Philippe
,
Revaud, Jerome
in
Algorithms
,
Analysis
,
Artificial Intelligence
2016
We introduce a novel matching algorithm, called DeepMatching, to compute dense correspondences between images. DeepMatching relies on a hierarchical, multi-layer, correlational architecture designed for matching images and was inspired by deep convolutional approaches. The proposed matching algorithm can handle non-rigid deformations and repetitive textures and efficiently determines dense correspondences in the presence of significant changes between images. We evaluate the performance of DeepMatching, in comparison with state-of-the-art matching algorithms, on the Mikolajczyk (Mikolajczyk et al. A comparison of affine region detectors,
2005
), the MPI-Sintel (Butler et al. A naturalistic open source movie for optical flow evaluation,
2012
) and the Kitti (Geiger et al. Vision meets robotics: The KITTI dataset,
2013
) datasets. DeepMatching outperforms the state-of-the-art algorithms and shows excellent results in particular for repetitive textures. We also apply DeepMatching to the computation of optical flow, called DeepFlow, by integrating it in the large displacement optical flow (LDOF) approach of Brox and Malik (Large displacement optical flow: descriptor matching in variational motion estimation,
2011
). Additional robustness to large displacements and complex motion is obtained thanks to our matching approach. DeepFlow obtains competitive performance on public benchmarks for optical flow estimation.
Journal Article
Investigating the Role of Image Retrieval for Visual Localization
by
Weinzaepfel, Philippe
,
Guérin, Nicolas
,
Sattler, Torsten
in
Algorithms
,
Augmented reality
,
Benchmarks
2022
Visual localization, i.e., camera pose estimation in a known scene, is a core component of technologies such as autonomous driving and augmented reality. State-of-the-art localization approaches often rely on image retrieval techniques for one of two purposes: (1) provide an approximate pose estimate or (2) determine which parts of the scene are potentially visible in a given query image. It is common practice to use state-of-the-art image retrieval algorithms for both of them. These algorithms are often trained for the goal of retrieving the same landmark under a large range of viewpoint changes which often differs from the requirements of visual localization. In order to investigate the consequences for visual localization, this paper focuses on understanding the role of image retrieval for multiple visual localization paradigms. First, we introduce a novel benchmark setup and compare state-of-the-art retrieval representations on multiple datasets using localization performance as metric. Second, we investigate several definitions of “ground truth” for image retrieval. Using these definitions as upper bounds for the visual localization paradigms, we show that there is still significant room for improvement. Third, using these tools and in-depth analysis, we show that retrieval performance on classical landmark retrieval or place recognition tasks correlates only for some but not all paradigms to localization performance. Finally, we analyze the effects of blur and dynamic scenes in the images. We conclude that there is a need for retrieval approaches specifically designed for localization paradigms. Our benchmark and evaluation protocols are available at https://github.com/naver/kapture-localization.
Journal Article
PoseScript: Linking 3D Human Poses and Natural Language
by
Moreno-Noguer, Francesc
,
Weinzaepfel, Philippe
,
Delmas, Ginger
in
Algorithms
,
Annotations
,
Body parts
2024
Natural language plays a critical role in many computer vision applications, such as image captioning, visual question answering, and cross-modal retrieval, to provide fine-grained semantic information. Unfortunately, while human pose is key to human understanding, current 3D human pose datasets lack detailed language descriptions. To address this issue, we have introduced the PoseScript dataset. This dataset pairs more than six thousand 3D human poses from AMASS with rich human-annotated descriptions of the body parts and their spatial relationships. Additionally, to increase the size of the dataset to a scale that is compatible with data-hungry learning algorithms, we have proposed an elaborate captioning process that generates automatic synthetic descriptions in natural language from given 3D keypoints. This process extracts low-level pose information, known as \"posecodes\", using a set of simple but generic rules on the 3D keypoints. These posecodes are then combined into higher level textual descriptions using syntactic rules. With automatic annotations, the amount of available data significantly scales up (100k), making it possible to effectively pretrain deep models for finetuning on human captions. To showcase the potential of annotated poses, we present three multi-modal learning tasks that utilize the PoseScript dataset. Firstly, we develop a pipeline that maps 3D poses and textual descriptions into a joint embedding space, allowing for cross-modal retrieval of relevant poses from large-scale datasets. Secondly, we establish a baseline for a text-conditioned model generating 3D poses. Thirdly, we present a learned process for generating pose descriptions. These applications demonstrate the versatility and usefulness of annotated poses in various tasks and pave the way for future research in the field.
Mimetics: Towards Understanding Human Actions Out of Context
by
Weinzaepfel, Philippe
,
Rogez, Grégory
in
Artificial neural networks
,
Benchmarks
,
Feature recognition
2021
Recent methods for video action recognition have reached outstanding performances on existing benchmarks. However, they tend to leverage context such as scenes or objects instead of focusing on understanding the human action itself. For instance, a tennis field leads to the prediction playing tennis irrespectively of the actions performed in the video. In contrast, humans have a more complete understanding of actions and can recognize them without context. The best example of out-of-context actions are mimes, that people can typically recognize despite missing relevant objects and scenes. In this paper, we propose to benchmark action recognition methods in such absence of context and introduce a novel dataset, Mimetics, consisting of mimed actions for a subset of 50 classes from the Kinetics benchmark. Our experiments show that (a) state-of-the-art 3D convolutional neural networks obtain disappointing results on such videos, highlighting the lack of true understanding of the human actions and (b) models leveraging body language via human pose are less prone to context biases. In particular, we show that applying a shallow neural network with a single temporal convolution over body pose features transferred to the action recognition problem performs surprisingly well compared to 3D action recognition methods.
LCR-Net++: Multi-person 2D and 3D Pose Detection in Natural Images
by
Weinzaepfel, Philippe
,
Schmid, Cordelia
,
Rogez, Gregory
in
Architecture
,
Body parts
,
Image detection
2019
We propose an end-to-end architecture for joint 2D and 3D human pose estimation in natural images. Key to our approach is the generation and scoring of a number of pose proposals per image, which allows us to predict 2D and 3D poses of multiple people simultaneously. Hence, our approach does not require an approximate localization of the humans for initialization. Our Localization-Classification-Regression architecture, named LCR-Net, contains 3 main components: 1) the pose proposal generator that suggests candidate poses at different locations in the image; 2) a classifier that scores the different pose proposals; and 3) a regressor that refines pose proposals both in 2D and 3D. All three stages share the convolutional feature layers and are trained jointly. The final pose estimation is obtained by integrating over neighboring pose hypotheses, which is shown to improve over a standard non maximum suppression algorithm. Our method recovers full-body 2D and 3D poses, hallucinating plausible body parts when the persons are partially occluded or truncated by the image boundary. Our approach significantly outperforms the state of the art in 3D pose estimation on Human3.6M, a controlled environment. Moreover, it shows promising results on real images for both single and multi-person subsets of the MPII 2D pose benchmark and demonstrates satisfying 3D pose results even for multi-person images.
Investigating the Role of Image Retrieval for Visual Localization -- An exhaustive benchmark
by
Weinzaepfel, Philippe
,
Guérin, Nicolas
,
Sattler, Torsten
in
Algorithms
,
Augmented reality
,
Benchmarks
2022
Visual localization, i.e., camera pose estimation in a known scene, is a core component of technologies such as autonomous driving and augmented reality. State-of-the-art localization approaches often rely on image retrieval techniques for one of two purposes: (1) provide an approximate pose estimate or (2) determine which parts of the scene are potentially visible in a given query image. It is common practice to use state-of-the-art image retrieval algorithms for both of them. These algorithms are often trained for the goal of retrieving the same landmark under a large range of viewpoint changes which often differs from the requirements of visual localization. In order to investigate the consequences for visual localization, this paper focuses on understanding the role of image retrieval for multiple visual localization paradigms. First, we introduce a novel benchmark setup and compare state-of-the-art retrieval representations on multiple datasets using localization performance as metric. Second, we investigate several definitions of \"ground truth\" for image retrieval. Using these definitions as upper bounds for the visual localization paradigms, we show that there is still sgnificant room for improvement. Third, using these tools and in-depth analysis, we show that retrieval performance on classical landmark retrieval or place recognition tasks correlates only for some but not all paradigms to localization performance. Finally, we analyze the effects of blur and dynamic scenes in the images. We conclude that there is a need for retrieval approaches specifically designed for localization paradigms. Our benchmark and evaluation protocols are available at https://github.com/naver/kapture-localization.
PoseEmbroider: Towards a 3D, Visual, Semantic-aware Human Pose Representation
by
Weinzaepfel, Philippe
,
Rogez, Grégory
,
Moreno-Noguer, Francesc
in
Image processing
,
Information retrieval
,
Pose estimation
2024
Aligning multiple modalities in a latent space, such as images and texts, has shown to produce powerful semantic visual representations, fueling tasks like image captioning, text-to-image generation, or image grounding. In the context of human-centric vision, albeit CLIP-like representations encode most standard human poses relatively well (such as standing or sitting), they lack sufficient acuteness to discern detailed or uncommon ones. Actually, while 3D human poses have been often associated with images (e.g. to perform pose estimation or pose-conditioned image generation), or more recently with text (e.g. for text-to-pose generation), they have seldom been paired with both. In this work, we combine 3D poses, person's pictures and textual pose descriptions to produce an enhanced 3D-, visual- and semantic-aware human pose representation. We introduce a new transformer-based model, trained in a retrieval fashion, which can take as input any combination of the aforementioned modalities. When composing modalities, it outperforms a standard multi-modal alignment retrieval model, making it possible to sort out partial information (e.g. image with the lower body occluded). We showcase the potential of such an embroidered pose representation for (1) SMPL regression from image with optional text cue; and (2) on the task of fine-grained instruction generation, which consists in generating a text that describes how to move from one 3D pose to another (as a fitness coach). Unlike prior works, our model can take any kind of input (image and/or pose) without retraining.
Win-Win: Training High-Resolution Vision Transformers from Two Windows
by
Weinzaepfel, Philippe
,
Leroy, Vincent
,
Revaud, Jerome
in
High resolution
,
Image segmentation
,
Inference
2024
Transformers have become the standard in state-of-the-art vision architectures, achieving impressive performance on both image-level and dense pixelwise tasks. However, training vision transformers for high-resolution pixelwise tasks has a prohibitive cost. Typical solutions boil down to hierarchical architectures, fast and approximate attention, or training on low-resolution crops. This latter solution does not constrain architectural choices, but it leads to a clear performance drop when testing at resolutions significantly higher than that used for training, thus requiring ad-hoc and slow post-processing schemes. In this paper, we propose a novel strategy for efficient training and inference of high-resolution vision transformers. The key principle is to mask out most of the high-resolution inputs during training, keeping only N random windows. This allows the model to learn local interactions between tokens inside each window, and global interactions between tokens from different windows. As a result, the model can directly process the high-resolution input at test time without any special trick. We show that this strategy is effective when using relative positional embedding such as rotary embeddings. It is 4 times faster to train than a full-resolution network, and it is straightforward to use at test time compared to existing approaches. We apply this strategy to three dense prediction tasks with high-resolution data. First, we show on the task of semantic segmentation that a simple setting with 2 windows performs best, hence the name of our method: Win-Win. Second, we confirm this result on the task of monocular depth prediction. Third, we further extend it to the binocular task of optical flow, reaching state-of-the-art performance on the Spring benchmark that contains Full-HD images with an order of magnitude faster inference than the best competitor.
SACReg: Scene-Agnostic Coordinate Regression for Visual Localization
2023
Scene coordinates regression (SCR), i.e., predicting 3D coordinates for every pixel of a given image, has recently shown promising potential. However, existing methods remain limited to small scenes memorized during training, and thus hardly scale to realistic datasets and scenarios. In this paper, we propose a generalized SCR model trained once to be deployed in new test scenes, regardless of their scale, without any finetuning. Instead of encoding the scene coordinates into the network weights, our model takes as input a database image with some sparse 2D pixel to 3D coordinate annotations, extracted from e.g. off-the-shelf Structure-from-Motion or RGB-D data, and a query image for which are predicted a dense 3D coordinate map and its confidence, based on cross-attention. At test time, we rely on existing off-the-shelf image retrieval systems and fuse the predictions from a shortlist of relevant database images w.r.t. the query. Afterwards camera pose is obtained using standard Perspective-n-Point (PnP). Starting from selfsupervised CroCo pretrained weights, we train our model on diverse datasets to ensure generalizabilty across various scenarios, and significantly outperform other scene regression approaches, including scene-specific models, on multiple visual localization benchmarks. Finally, we show that the database representation of images and their 2D-3D annotations can be highly compressed with negligible loss of localization performance.