Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,172 result(s) for "Weiss, Scott T"
Sort by:
Prenatal vitamin D supplementation reduces risk of asthma/recurrent wheeze in early childhood: A combined analysis of two randomized controlled trials
We recently published two independent randomized controlled trials of vitamin D supplementation during pregnancy, both indicating a >20% reduced risk of asthma/recurrent wheeze in the offspring by 3 years of age. However, neither reached statistical significance. To perform a combined analysis of the two trials and investigate whether maternal 25-hydroxy-vitamin D (25(OH)D) level at trial entry modified the intervention effect. VDAART (N = 806) and COPSAC2010. (N = 581) randomized pregnant women to daily high-dose vitamin D3 (4,000 IU/d and 2,400 IU/d, respectively) or placebo. All women also received a prenatal vitamin containing 400 IU/d vitamin D3. The primary outcome was asthma/recurrent wheeze from 0-3yrs. Secondary end-points were specific IgE, total IgE, eczema and lower respiratory tract infections (LRTI). We conducted random effects combined analyses of the treatment effect, individual patient data (IPD) meta-analyses, and analyses stratified by 25(OH)D level at study entry. The analysis showed a 25% reduced risk of asthma/recurrent wheeze at 0-3yrs: adjusted odds ratio (aOR) = 0.74 (95% CI, 0.57-0.96), p = 0.02. The effect was strongest among women with 25(OH)D level ≥30ng/ml at study entry: aOR = 0.54 (0.33-0.88), p = 0.01, whereas no significant effect was observed among women with 25(OH)D level <30ng/ml at study entry: aOR = 0.84 (0.62-1.15), p = 0.25. The IPD meta-analyses showed similar results. There was no effect on the secondary end-points. This combined analysis shows that vitamin D supplementation during pregnancy results in a significant reduced risk of asthma/recurrent wheeze in the offspring, especially among women with 25(OH)D level ≥ 30 ng/ml at randomization, where the risk was almost halved. Future studies should examine the possibility of raising 25(OH)D levels to at least 30 ng/ml early in pregnancy or using higher doses than used in our studies. COPSAC2010: ClinicalTrials.gov NCT00856947; VDAART: ClinicalTrials.gov NCT00920621.
Dissecting the role of the human microbiome in COVID-19 via metagenome-assembled genomes
Coronavirus disease 2019 (COVID-19), primarily a respiratory disease caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is often accompanied by gastrointestinal symptoms. However, little is known about the relation between the human microbiome and COVID-19, largely due to the fact that most previous studies fail to provide high taxonomic resolution to identify microbes that likely interact with SARS-CoV-2 infection. Here we used whole-metagenome shotgun sequencing data together with assembly and binning strategies to reconstruct metagenome-assembled genomes (MAGs) from 514 COVID-19 related nasopharyngeal and fecal samples in six independent cohorts. We reconstructed a total of 11,584 medium-and high-quality microbial MAGs and obtained 5403 non-redundant MAGs (nrMAGs) with strain-level resolution. We found that there is a significant reduction of strain richness for many species in the gut microbiome of COVID-19 patients. The gut microbiome signatures can accurately distinguish COVID-19 cases from healthy controls and predict the progression of COVID-19. Moreover, we identified a set of nrMAGs with a putative causal role in the clinical manifestations of COVID-19 and revealed their functional pathways that potentially interact with SARS-CoV-2 infection. Finally, we demonstrated that the main findings of our study can be largely validated in three independent cohorts. The presented results highlight the importance of incorporating the human gut microbiome in our understanding of SARS-CoV-2 infection and disease progression. Here, using whole-metagenome shotgun sequencing data from patients with COVID-19 and controls, the authors reconstruct 11,584 microbial metagenome-assembled genomes (MAGs) including 5,403 non-redundant MAGs, revealing microbiota and metabolic pathways associations with SARS-CoV-2 infection at strain-level resolution.
Deciphering functional redundancy in the human microbiome
Although the taxonomic composition of the human microbiome varies tremendously across individuals, its gene composition or functional capacity is highly conserved — implying an ecological property known as functional redundancy. Such functional redundancy has been hypothesized to underlie the stability and resilience of the human microbiome, but this hypothesis has never been quantitatively tested. The origin of functional redundancy is still elusive. Here, we investigate the basis for functional redundancy in the human microbiome by analyzing its genomic content network — a bipartite graph that links microbes to the genes in their genomes. We find that this network exhibits several topological features that favor high functional redundancy. Furthermore, we develop a simple genome evolution model to generate genomic content network, finding that moderate selection pressure and high horizontal gene transfer rate are necessary to generate genomic content networks with key topological features that favor high functional redundancy. Finally, we analyze data from two published studies of fecal microbiota transplantation (FMT), finding that high functional redundancy of the recipient’s pre-FMT microbiota raises barriers to donor microbiota engraftment. This work elucidates the potential ecological and evolutionary processes that create and maintain functional redundancy in the human microbiome and contribute to its resilience. Here, the authors develop a genome evolution model to investigate the origin of functional redundancy in the human microbiome by analyzing its genomic content network and illustrate potential ecological and evolutionary processes that may contribute to its resilience.
Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations
Previous studies on the differences in gut microbiota between exclusively breastfed (EBF) and non-EBF infants have provided highly variable results. Here we perform a meta-analysis of seven microbiome studies (1825 stool samples from 684 infants) to compare the gut microbiota of non-EBF and EBF infants across populations. In the first 6 months of life, gut bacterial diversity, microbiota age, relative abundances of Bacteroidetes and Firmicutes, and predicted microbial pathways related to carbohydrate metabolism are consistently higher in non-EBF than in EBF infants, whereas relative abundances of pathways related to lipid metabolism, vitamin metabolism, and detoxification are lower. Variation in predicted microbial pathways associated with non-EBF infants is larger among infants born by Caesarian section than among those vaginally delivered. Longer duration of exclusive breastfeeding is associated with reduced diarrhea-related gut microbiota dysbiosis. Furthermore, differences in gut microbiota between EBF and non-EBF infants persist after 6 months of age. Our findings elucidate some mechanisms of short and long-term benefits of exclusive breastfeeding across different populations. Studies on the effects of breastfeeding on the infant gut microbiota have provided inconsistent results. Here, Ho et al. perform a meta-analysis of seven studies across different populations, supporting that exclusive breastfeeding is associated with short-term and long-term alterations in the infant gut microbiota.
Mapping the ecological networks of microbial communities
Mapping the ecological networks of microbial communities is a necessary step toward understanding their assembly rules and predicting their temporal behavior. However, existing methods require assuming a particular population dynamics model, which is not known a priori. Moreover, those methods require fitting longitudinal abundance data, which are often not informative enough for reliable inference. To overcome these limitations, here we develop a new method based on steady-state abundance data. Our method can infer the network topology and inter-taxa interaction types without assuming any particular population dynamics model. Additionally, when the population dynamics is assumed to follow the classic Generalized Lotka–Volterra model, our method can infer the inter-taxa interaction strengths and intrinsic growth rates. We systematically validate our method using simulated data, and then apply it to four experimental data sets. Our method represents a key step towards reliable modeling of complex, real-world microbial communities, such as the human gut microbiota. Understanding ecological interactions in microbial communities is limited by lack of informative longitudinal abundance data necessary for reliable inference. Here, Xiao et al . develop a method to infer the interactions between microbes based on their abundances in steady-state samples.
Six-Year Follow-up of a Trial of Antenatal Vitamin D for Asthma Reduction
In a previously published controlled trial, maternal administration of vitamin D during pregnancy was found to protect against wheeze in the offspring at the age of 3 years. In this follow-up study involving the same children at the age of 6 years, that supplementation no longer had a protective effect.
Removal of false positives in metagenomics-based taxonomy profiling via targeting Type IIB restriction sites
Accurate species identification and abundance estimation are critical for the interpretation of whole metagenome sequencing (WMS) data. Yet, existing metagenomic profilers suffer from false-positive identifications, which can account for more than 90% of total identified species. Here, by leveraging species-specific Type IIB restriction endonuclease digestion sites as reference instead of universal markers or whole microbial genomes, we present a metagenomic profiler, MAP2B ( M et A genomic P rofiler based on type IIB restriction sites), to resolve those issues. We first illustrate the pitfalls of using relative abundance as the only feature in determining false positives. We then propose a feature set to distinguish false positives from true positives, and using simulated metagenomes from CAMI2, we establish a false-positive recognition model. By benchmarking the performance in metagenomic profiling using a simulation dataset with varying sequencing depth and species richness, we illustrate the superior performance of MAP2B over existing metagenomic profilers in species identification. We further test the performance of MAP2B using real WMS data from an ATCC mock community, confirming its superior precision against sequencing depth. Finally, by leveraging WMS data from an IBD cohort, we demonstrate the taxonomic features generated by MAP2B can better discriminate IBD and predict metabolomic profiles. Here, leveraging species-specific Type IIB restriction endonuclease digestion sites as reference instead of universal markers or whole microbial genomes, the authors introduce MAP2B, a metagenomic profiler, showing it can significantly remove false-positive identification and generate highly accurate taxonomic profiling results.
An ecological framework to understand the efficacy of fecal microbiota transplantation
Human gut microbiota plays critical roles in physiology and disease. Our understanding of ecological principles that govern the dynamics and resilience of this highly complex ecosystem remains rudimentary. This knowledge gap becomes more problematic as new approaches to modifying this ecosystem, such as fecal microbiota transplantation (FMT), are being developed as therapeutic interventions. Here we present an ecological framework to understand the efficacy of FMT in treating conditions associated with a disrupted gut microbiota, using the recurrent Clostridioides difficile infection as a prototype disease. This framework predicts several key factors that determine the efficacy of FMT. Moreover, it offers an efficient algorithm for the rational design of personalized probiotic cocktails to decolonize pathogens. We analyze data from both preclinical mouse experiments and a clinical trial of FMT to validate our theoretical framework. The presented results significantly improve our understanding of the ecological principles of FMT and have a positive translational impact on the rational design of general microbiota-based therapeutics. Here, the authors present a theoretical framework based on community ecology and network science to investigate the efficacy of fecal microbiota transplantation in conditions associated with a disrupted gut microbiota, using the recurrent Clostridioides difficile infection as a prototype disease.
Transcriptome analysis of early pregnancy vitamin D status and spontaneous preterm birth
We conducted a literature review on the studies that investigated the relationship of preterm birth, including spontaneous preterm birth (sPTB), with vitamin D status. Overall, these studies demonstrated that the incidence of sPTB was associated with maternal vitamin D insufficiency in early pregnancy. However, the potential mechanisms and biological pathways are unknown. To investigate early pregnancy gene expression signatures associated with both vitamin D insufficiency and sPTB. We further constructed a network of these gene signatures and identified the common biological pathways involved. We conducted peripheral blood transcriptome profiling at 10-18 weeks of gestation in a nested case-control cohort of 24 pregnant women who participated in the Vitamin D Antenatal Asthma Reduction Trial (VDAART). In this cohort, 8 women had spontaneous preterm delivery (21-32 weeks of gestation) and 17 women had vitamin D insufficiency (25-hydroxyvitamin D < 30 ng/mL). We separately identified vitamin D-associated and sPTB gene signatures at 10 to 18 weeks and replicated the overlapping signatures in the mid-pregnancy peripheral blood of an independent cohort with sPTB cases. At 10-18 weeks of gestation, 146 differentially expressed genes (25 upregulated) were associated with both vitamin D insufficiency and sPTB in the discovery cohort (FDR < 0.05). Of these genes, 43 (25 upregulated) were replicated in the independent cohort of sPTB cases and controls with normal pregnancies (P < 0.05). Functional enrichment and network analyses of the replicated gene signatures suggested several highly connected nodes related to inflammatory and immune responses. Our gene expression study and network analyses suggest that the dysregulation of immune response pathways due to early pregnancy vitamin D insufficiency may contribute to the pathobiology of sPTB.
Early pregnancy vitamin D status and risk of preeclampsia
Low vitamin D status in pregnancy was proposed as a risk factor of preeclampsia. We assessed the effect of vitamin D supplementation (4,400 vs. 400 IU/day), initiated early in pregnancy (10-18 weeks), on the development of preeclampsia. The effects of serum vitamin D (25-hydroxyvitamin D [25OHD]) levels on preeclampsia incidence at trial entry and in the third trimester (32-38 weeks) were studied. We also conducted a nested case-control study of 157 women to investigate peripheral blood vitamin D-associated gene expression profiles at 10 to 18 weeks in 47 participants who developed preeclampsia. Of 881 women randomized, outcome data were available for 816, with 67 (8.2%) developing preeclampsia. There was no significant difference between treatment (N = 408) or control (N = 408) groups in the incidence of preeclampsia (8.08% vs. 8.33%, respectively; relative risk: 0.97; 95% CI, 0.61-1.53). However, in a cohort analysis and after adjustment for confounders, a significant effect of sufficient vitamin D status (25OHD ≥30 ng/ml) was observed in both early and late pregnancy compared with insufficient levels (25OHD <30 ng/ml) (adjusted odds ratio, 0.28; 95% CI, 0.10-0.96). Differential expression of 348 vitamin D-associated genes (158 upregulated) was found in peripheral blood of women who developed preeclampsia (FDR <0.05 in the Vitamin D Antenatal Asthma Reduction Trial [VDAART]; P < 0.05 in a replication cohort). Functional enrichment and network analyses of this vitamin D-associated gene set suggests several highly functional modules related to systematic inflammatory and immune responses, including some nodes with a high degree of connectivity. Vitamin D supplementation initiated in weeks 10-18 of pregnancy did not reduce preeclampsia incidence in the intention-to-treat paradigm. However, vitamin D levels of 30 ng/ml or higher at trial entry and in late pregnancy were associated with a lower risk of preeclampsia. Differentially expressed vitamin D-associated transcriptomes implicated the emergence of an early pregnancy, distinctive immune response in women who went on to develop preeclampsia. ClinicalTrials.gov NCT00920621. Quebec Breast Cancer Foundation and Genome Canada Innovation Network. This trial was funded by the National Heart, Lung, and Blood Institute. For details see Acknowledgments.