Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "Wele, D V"
Sort by:
Synthesis and Characterization of Water Based Silver Nanofluids
This present research is focus to synthesis water based silver nanofluids by chemical reduction which increase the thermal conductivity to enhance the rate of heat transfer, also to characterize the thermal properties and heat transfer performance of nanofluids over heat exchangers to enhance the efficiency and overall heat transfer coefficient of heat exchanger with simultaneous reduction in the area of heat exchanger. As noted above the basic concept of dispersing solids in fluids to enhance thermal conductivity. Solid particles are added because they conduct heat much better than do liquids. Compared with micro particles, nanoparticles stay suspended much longer and possess a much higher surface area. The surface/volume ratio of nanoparticles is 1000 times larger than that of microparticles. The high surface area of nanoparticles enhances the heat conduction of nanofluids since heat transfer occurs on the surface of the particle. The number of atoms present on the surface of nanoparticles, as opposed to the interior, is very large. Therefore, these unique properties of nanoparticles can be exploited to develop nanofluids.